Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

COHA and AGT for Spiked Instantons



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
19020067

Abstract

The well-known AGT correspondence relates $\mathcal{W}_N$-algebras and supersymmetric gauge theories on $\mathbb{C}^2$. Embedding $\mathbb{C}^2$ as a coordinate plane inside $\mathbb{C}^3$, one can associate the COHA to $\mathbb{C}^3$ and derive the corresponding $\mathcal{W}_N$ as a truncation of its Drinfeld double. Building up on Zhao's talk, I will discuss a generalization of this story, where $\mathbb{C}^2$ is replaced by a more general divisor inside $\mathbb{C}^3$ with three smooth components supported on the three coordinate planes. Truncations of the Drinfeld double lead to a three-parameter family of algebras $\mathcal{W}_{L,M,N}$ determining the vertex algebras associated to Nekrasov's spiked instantons. Many interesting questions emerge when considering a general Calabi-Yau three-fold instead of $\mathbb{C}^3$. I will discuss a class of vertex algebras conjecturally arising from divisors inside more general toric Calabi-Yau three-folds.