CO639 Scribe Notes

Prepared by Jamie Batuwantudawe
Edited by Daniel Gottesman
Guest Lecturer: Martin Rötteler

February 26, 2004

Higher Dimensional Stabilizers
The Pauli group $\mathcal{P}_{n, p}$ has order

$$
\left|\mathcal{P}_{n, p}\right|=p^{2 n+1}
$$

Moreover, each element $E \in \mathcal{P}_{n, p}$ can be written uniquely as

$$
E=\omega_{p}^{\gamma} \cdot X_{\vec{\alpha}} \cdot Z_{\vec{\beta}}
$$

where $\gamma \in G F(p)$ and $\vec{\alpha}, \vec{\beta} \in G F(p)^{n}$.
Furthermore, we have that $\mathcal{P}_{n, p} /$ scalars $\simeq G F(p)^{n} \times G F(p)^{n}$ and this space is equipped with a symplectic inner product

$$
(\alpha \mid \beta) *\left(\alpha^{\prime} \mid \beta^{\prime}\right)=\sum_{i=1}^{n} \alpha_{i}^{\prime} \cdot \beta_{i}-\alpha_{i} \cdot \beta_{i}^{\prime}
$$

and two Pauli operators commute iff $(\alpha \mid \beta) *\left(\alpha^{\prime} \mid \beta^{\prime}\right)=0$.

Stabilizer matrix: Given an abelian subgroup $\mathcal{S} \subseteq \mathcal{P}_{n, p}$, pick a minimum generating set having trivial intersection with the centre. $\omega_{p}^{r_{i}} \cdot X_{\overrightarrow{\alpha_{i}}} \cdot Z_{\overrightarrow{\beta_{i}}}$, where $i=1, \ldots k$. Stabilizer matrix is,

$$
\left(\begin{array}{c|c}
\alpha_{1} & \beta_{1} \\
\vdots & \vdots \\
\alpha_{n} & \beta_{n}
\end{array}\right)=(X \mid Z) \in G F(p)^{k \times 2 n}
$$

Corresponds to a $[[n, n-k, d]]_{p}$ stabilizer code.
Here, $d=\min \left\{\omega t(v), v \in \mathcal{S}^{*} \backslash \mathcal{S}\right\}^{p}$, where \mathcal{S}^{*} is the dual of \mathcal{S} with respect to $*$

$$
\mathcal{S}^{*}=\{v: c * v=0 \forall c \in \mathcal{S}\}
$$

We have the following in $\mathcal{C}_{1, p}: D F T_{p}, P, M_{\gamma}$ (operate like 2×2 matrices on $(\alpha \mid \beta))$.

$$
\begin{aligned}
D F T & :=\frac{1}{\sqrt{p}} \sum_{x, z=0}^{p-1} \omega_{p}^{x z}|z\rangle\langle x| \\
M_{\gamma} & :=\sum_{y=0}^{p-1}|\gamma y\rangle\langle y|, \quad \gamma \in G F(p) \\
P & :=\sum_{y=0}^{p-1} \omega_{p}^{y(y-1) / 2}|y\rangle\langle y|
\end{aligned}
$$

We have the following also in $\mathcal{C}_{2, p}: A D D^{(1,2)}(4 \times 4$ matrix $)$.

$$
A D D:=\sum_{x, y=0}^{p-1}|x\rangle|x+y\rangle\langle y|\langle x|
$$

The following is a standard fact:

$$
\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\gamma^{-1} & 0 \\
0 & \gamma
\end{array}\right)\right\rangle=S L(2, G F(p))
$$

$S L(2, G F(p))$ can map an $(\alpha \mid \beta) \rightarrow\left(\alpha^{\prime} \mid \beta^{\prime}\right)$, provided both are not $(0,0)$.
$A D D^{(1,2)}$ operates on pairs of qubits like in binary, sending $X \otimes I \rightarrow X \otimes X$.

Theorem: $\mathcal{C}_{n, p}=\left\langle D F T_{p}, P, M_{\gamma}, A D D^{(i, j)}\right.$, scalars, and Paulis \rangle
Start with an abelian $\mathcal{S} \subseteq \mathcal{P}_{n, p}$. Map to $\mathcal{S}_{0}=\left\langle Z_{1}^{(1)}, Z_{1}^{(2)}, \ldots Z_{1}^{(k)}\right\rangle$.

- bad for EC since weight is 1
- but, eigenstates can be read off directly
- $|00 . .0\rangle|\phi\rangle_{\text {in }}$ is eigenstate of \mathcal{S}_{0}. Now, map back to \mathcal{S}.

Reed-Solomon

- pick polynomial of degree $\leq d$
- evaluate at all possible points

For $G F(p)$,

$$
\begin{gathered}
\\
1 \\
x \\
x^{2} \\
\vdots \\
x^{d}
\end{gathered}\left(\begin{array}{ccccc}
0 & 1 & 2 & \ldots & (p-1) \\
1 & 1 & 1 & \ldots & 1 \\
0 & 1 & 2 & \ldots & (p-1) \\
0 & 1 & 4 & \ldots & (p-1)^{2} \\
\vdots & & & & \\
0 & 1 & 2^{d} & \ldots & (p-1)^{d}
\end{array}\right)=\mathcal{G}^{d, p}
$$

This is the generator matrix for a RS code $[p, d+1, p-d]_{p}$. We know the distance since there are at most d zeros for this polynomial.

Singleton bound for $[n, k, d]_{p}$ is always $n+1 \geq k+d$. If equality, get MDS codes (maximum distance separable). For classical codes, this means that codewords can be seperated into message symbols and check symbols.
By throwing away col 1 and row 1 , get $[p-1, d-1, p-d]$. Again, this is an MDS code.

We can make a QECC by CSS,

$$
\begin{gathered}
C_{1}=\left[n, k_{1}, d_{1}\right], \quad C_{2}=\left[n, k_{2}, d_{2}\right] \text { with } C_{2}^{\perp} \subseteq C_{1} \\
(X \mid Z)=\left(\begin{array}{cc}
C_{1}^{\perp} & 0 \\
0 & C_{2}^{\perp}
\end{array}\right) \Rightarrow\left[\left[n, k_{1}+k_{2}-n, \geq \min \left(d_{1}, d_{2}\right)\right]\right]
\end{gathered}
$$

For $1 \leq d \leq\left\lfloor\frac{p-1}{2}\right\rfloor$, we get $C^{d, p}$ (code with generator $\mathcal{G}^{d, p}$) is self-orthogonal with respect to $x-y=\sum x_{i} \cdot y_{i}$.

$$
C^{d, p} \subseteq\left(C^{d, p}\right)^{\perp}
$$

Using CSS construction, QECC is $[[p, p-2 d-2, d+2]]_{p}$. This is a QMDS code. It saturates the Quantum Singleton Bound, $n+2 \geq k+2 d$. This bound holds for all alphabet sizes.

- can shorten, $[[p-1, p-2 d-1, d+1]]_{p}$
- using classical $G F\left(p^{2}\right)$, get QECC $\left[\left[p^{2}, p^{2}-2 d-2, d+2\right]\right]_{p}$ ie. $[[9,5,3]]$

