Quantum Error Correction / CO639

Prepared by Annika Niehage
Edited by Daniel Gottesman
lecture: 2004-01-08

1 Which errors can be corrected with the 9 -qubit code?

Cor.: The 9 -qubit code corrects any 2×2 matrix, or in fact any single-qubit superoperator.

Proof: Let S be a superoperator defined by

$$
S: \rho \mapsto \sum_{k} A_{k} \rho A_{k}^{\dagger}
$$

with $\sum_{k} A_{k}^{\dagger} A_{k}=\mathbb{I}$.

$$
S \otimes \mathbb{I}^{\otimes 8}(|\bar{\psi}\rangle\langle\bar{\psi}|) \underset{\substack{E C}}{\underset{\longmapsto}{\longmapsto}} \begin{array}{cc}
\sum_{k} A_{k}|\bar{\psi}\rangle\langle\bar{\psi}| A_{k}^{\dagger} \\
|\bar{\psi}\rangle\langle\bar{\psi}|
\end{array}
$$

where $S \otimes \mathbb{I}^{\otimes 8}(|\bar{\psi}\rangle\langle\bar{\psi}|)$ is a mixture of $\left\{A_{k}|\bar{\psi}\rangle\right\}$ with probabilities $\langle\bar{\psi}| A_{k}^{\dagger} A_{k}|\bar{\psi}\rangle$, and EC performs the procedure $A_{k}|\bar{\psi}\rangle \mapsto|\bar{\psi}\rangle$. This follows from the Cor. from last lecture.

2 Error probability with and without decoding

2.1 Classical errors occur

Each qubit is disturbed:

Total prob. of uncorrectable errors $=O\left(p^{2}\right)$

2.2 Every qubit is a little disturbed

Let $U^{\otimes 9}$ be the error with $U=\mathbb{I}+\epsilon U^{\prime}$, then we get

$$
U^{\otimes 9}=(\mathbb{I}^{\otimes 9}+\epsilon \underbrace{\left(U^{\prime} \otimes \mathbb{I}^{\otimes 8}+\mathbb{I} \otimes U^{\prime} \otimes \mathbb{I}^{\otimes 7}+\cdots\right)}_{\text {correctable }}+\epsilon^{2} \underbrace{\left(U^{\prime} \otimes U^{\prime} \otimes \mathbb{I}^{\otimes 7}\right)+\cdots}_{\text {uncorrectable }}
$$

So the final state is of the form $(\cdots)|\bar{\psi}\rangle+O\left(\epsilon^{2}\right)|?\rangle$
If ϵ is small, this gives a high fidelity to the original state: $\sim 1-O\left(\epsilon^{2}\right)$.

3 Necessary and sufficient conditions for error correction

For error correction, we have the two following steps:

1. Identify error
2. Correct / invert error

For these steps, the following conditions are sufficient:

1. $E|\bar{\psi}\rangle, F|\bar{\psi}\rangle$ orthogonal or the same:
(a) $\langle\bar{\psi}| E^{\dagger} F|\bar{\psi}\rangle=0 \quad$ or
(b) $E|\bar{\psi}\rangle=F|\bar{\psi}\rangle \forall \bar{\psi}$
$\Leftrightarrow(E-F)|\bar{\psi}\rangle=0$
2. $|\bar{\psi}\rangle \mapsto E|\bar{\psi}\rangle$

Mapping must be "unitary" restricted to valid encoded states. Take an orthogonal basis $|\bar{i}\rangle$
(a) $E|\bar{i}\rangle \perp E|\bar{j}\rangle$, if $i \neq j$.
$\Leftrightarrow\langle\bar{i}| E^{\dagger} E|\bar{j}\rangle=0$
(b)

$$
\begin{aligned}
& \| E|\bar{i}\rangle\|=\| E|\bar{j}\rangle \| \\
& \Leftrightarrow\langle\bar{i}| E^{\dagger} E|\bar{i}\rangle=\langle\bar{j}| E^{\dagger} E|\bar{j}\rangle
\end{aligned}
$$

Otherwise angles change, as in the figure, and the operation is non-unitary.

Theorem: QECC $|\psi\rangle \mapsto|\bar{\psi}\rangle$ corrects \mathcal{E} spanned by $\left\{E_{a}\right\}$ if and only if there exists $\left(c_{a b}\right)$ s. t.

$$
\langle\bar{j}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle=c_{a b} \delta_{i j} .
$$

Proof:

- Sufficiency:

2. ok
3. $c_{a b}$ is Hermitian and so diagonalizable.

Define new coordinates by

$$
\begin{aligned}
& \sum_{a} \alpha_{c a} E_{a}=F_{c} \text { s.t. } \\
& \langle\bar{j}| F_{c}^{\dagger} F_{d}|\bar{i}\rangle=\tilde{c}_{c d} \delta_{i j}
\end{aligned}
$$

Set $\tilde{c}_{c d}=\delta_{c d} \tilde{c}_{c}$. Then 1. is ok.

- Necessary condition: 2. must always hold.
$-\langle\bar{j}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle=0$ if $i \neq j:$
Pf: If not, $\exists a, b, i, j$ s. t.

$$
E_{a}|\bar{i}\rangle \not \perp E_{b}|\bar{j}\rangle
$$

Then there exists no EC mapping

$$
\begin{array}{lll}
E_{a} \mid \bar{i}> & \mapsto \mid \bar{i}> \\
E_{b} \mid \bar{j}> & \mapsto \mid \bar{j}>
\end{array}
$$

$-\langle\bar{i}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle=c_{a b}$
Pf: Suppose not, then:
$\exists i, j$ s. t .

$$
\begin{aligned}
& \operatorname{Re}\langle\bar{i}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle \neq \operatorname{Re}\langle\bar{j}| E_{a}^{\dagger} E_{b}|\bar{j}\rangle \\
&\langle\bar{i}|\left(E_{a}^{\dagger}+E_{b}^{\dagger}\right)\left(E_{a}+E_{b}\right)|\bar{i}\rangle \\
&=\langle\bar{i}| E_{a}^{\dagger} E_{a}|\bar{i}\rangle+\langle\bar{i}| E_{b}^{\dagger} E_{b}|\bar{i}\rangle+2 \operatorname{Re}\langle\bar{i}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle \\
&=\langle\bar{j}| E_{a}^{\dagger} E_{a}|\bar{j}\rangle+\langle\bar{j}| E_{b}^{\dagger} E_{b}|\bar{j}\rangle+2 \operatorname{Re}\langle\bar{j}| E_{a}^{\dagger} E_{b}|\bar{j}\rangle
\end{aligned}
$$

$$
\Longrightarrow \operatorname{Re}\langle\bar{i}| E_{a}^{\dagger} E_{b}|\bar{i}\rangle=\operatorname{Re}\langle\bar{j}| E_{a}^{\dagger} E_{b}|\bar{j}\rangle
$$

which contradicts the assumption. (We have used 2b above.)
Similar for imaginary part.

Def.: If $\langle\bar{i}| F_{c}^{\dagger} F_{c}|\bar{i}\rangle=0$, then 0 is an eigenvalue for $c_{a b}$ and the QECC is called degenerate. If 0 is not an eigenvalue for $c_{a b}$, then the QECC is called nondegenerate.

Def.: The weight $w t(E)$ of an error E is the number of qubits where E is not the identity.

Remark: Consider tensor products of \mathbb{I}, X, Y, Z of $w t \leq t$. Then

$$
\left\{E_{a}^{\dagger} E_{b}\right\}=\text { tensor products of } \mathbb{I}, X, Y, Z \text { of } w t \leq 2 t
$$

or

$$
\langle\bar{j}| P|\bar{i}\rangle=c(P) \delta_{i j} \text { with } w t(P) \leq 2 t
$$

Def: The distance of a QECC is the minimum weight of P s. t. $\langle\bar{j}| P|\bar{i}\rangle \neq c(P) \delta_{i j}$.

Remark: A code of distance $2 t+1$ corrects t errors.

