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1 Distance 2 Codes:

• Generators of the stabilizer for 4 qubits: XXXX, ZZZZ
[[4, 2, 2]]

• Generators of the stabilizer for 2n qubits: XXX..X, ZZZ..Z
[[2n, 2n− 2, 2]]

• Generators of the stabilizer for 2n+1 qubits: XXX..XXI, ZZZ...ZZZ, III...IXX
[[2n+1, n− 3, 2]] (Three generators are required since the stabilizer needs to be
abelian.)

2 Classical Linear Codes:

Codewordsv ∈ C are binary vectors. Linear code:v + w ∈ C whenv,w ∈ C (for a
code over a finite fieldF , also ifα ∈ F,v ∈ C ⇒ αv ∈ C)

2.1 Generator matrix

Codewords are linear combinations of rows of a generator matrix. (Example for[7, 4, 3]
classical code) :

G =


1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
1 1 1 1 1 1 1




1
0
1
0

 =
(

0 1 0 1 1 0 1
)

1



2.2 Parity Check Matrix:

GHT = 0 so that ifG is ak×n matrix, thenH is n− k×n. In the previous case, we
can show that one possible parity matrix is

H =

 1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1


H annihilates valid codewordsv: Hv = 0. H(v + e) in general gives us the error
syndrome of the vectore.

Let hi be theith row of H. Sincehiv = 0,hjv = 0 ⇒ (hi + hj)v = 0 thenH
generates the “dual code”C⊥.

2.3 Distance (classical case):

• Definition of Hamming distance: The Hamming distance betweenv andw is
the # of bits on whichv andw differ.

• Definition of Distance: The distance of an error-correcting code C is the mini-
mum Hamming distance between any two vectors in C.

• Distance d code can correctb(d− 1)/2c errors.

• Distance of C = minimum weight of anyv ∈ C = minimum # of columns of H
that are linearly dependent.

2.4 Hamming Codes (example):

Hamming codes haver rows in their parity check matrixH, and the columns are all
possible nonzeror-bit vectors (there are2r − 1 of them). Thus, any two columns of
H are distinct, but there are sets of three that are linearly dependent. Thus, Hamming
codes have distance3. A Hamming code has parameters[2r − 1, n− r, 3].

Considerr = 2 and look at the matrix

H =
(

1 1 0
1 0 1

)
⇒ G =

(
1 1 1

)
(G gives the repetition code.)
If v ∈ C ande ∈ C⊥ thenv + e has the same error syndrome ase (Hv = 0). In
the previous parity check matrix, replace 1 by Z and 0 by I to obtain ZZI and ZIZ. The
stabilizer generated by these operator will correct the same number of bit flip errors as
the classical code should have corrected.
If we replace 1 by X instead of Z then we obtain XXI and XIX. The stabilizer gener-
ated by these operators will correct the same number of phase flip errors as the classical
code should have corrected.
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3 CSS (Calderbank-Shor-Steane) Codes:

• Consider 2 classical linear codes:C1 = [n, k1, d1] andC2 = [n, k2, d2]
In the parity check matrix forC1 replace 1 by Z and 0 by I. In the parity check
matrix for C2 replace 1 by X and 0 by I. If the new operators commute, we get
a quantum CSS code[[n, k1 + k2 − n, d]] where d= min(d1, d2) (if the code is
non-degenerate).

• Example:7-qubit code. FromC1 = C2 = [7, 4, 3] we can get[[7, 1, 3]] with
a stabilizer generated by ZZZZIII, ZZIIZZI, ZIZIZIZ, XXXXIII, XXIIXXI and
XIXIXIX.
However, the stabilizer is an abelian group if and only ifH1H

T
2 = 0 whereHi

is the parity check matrix ofCi, which generates the codeC⊥i . This imply that
C⊥2 ⊆ C1 (which is equivalent toC⊥1 ⊆ C2).

• We get a family of Hamming codesC1 = C2 = [2r − 1, 2r − 1− r, 3] that give
CSS codes[[2r − 1, 2r − 1− 2r, 3]]

4 Question for next class:

Why does the 9-qubit code have distance 3, but the classical code given by the stabilizer
generated by XXXXXXIII and IIIXXXXXX as only distance 2?
Short answer: Since the 9-qubit code is degenerate. Since ZZIIIIIII is in the stabilizer,
it implies that the errors ZIIIIIIII and IZIIIIIII (which have the same syndrome) can be
corrected by the same operation. Many other errors are also degenerate and that make
the distance of the code more than 2.

Moral: The distance of a CSS code could be greater than min(d1, d2).
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