CO639 Scribe Notes

Prepared by Jamie Batuwantudawe
Edited by Daniel Gottesman

February 3, 2004

5-qubit code	GF(4) version
$X Z Z X I$	$I X X X X$
$I X Z Z X$	$I Z Z Z Z$
$X I X Z Z$	$X I X Z Y$
$Z X I X Z$	$Z I Z Y X$

Two QECCs are equivalent iff one of them can be converted to the other via:

1. permutations of qubits
2. unitary operations on individual qubits

How does a unitary affect the code?

$$
\begin{gathered}
M|\bar{\psi}\rangle=M|\bar{\psi}\rangle, \forall|\bar{\psi}\rangle \in C \\
U|\bar{\psi}\rangle \in U(C) \Rightarrow\left(U M U^{\dagger}\right) U|\bar{\psi}\rangle=U M|\bar{\psi}\rangle=U|\bar{\psi}\rangle
\end{gathered}
$$

So, $U M U^{\dagger}$ is in the new stabilizer if it is in \mathcal{P}

Two Lessons

1. $M \longmapsto U M U^{\dagger}$
2. Interested in U 's that transform Pauli operators to Pauli operators

Def: Clifford Group $\mathcal{C}=\left\{U \mid U P U^{\dagger}=\mathcal{P}\right\}$

- $U \cdot U^{\dagger}$ is an automorphism of \mathcal{P}
- $U(P Q) U^{\dagger}=\left(U P U^{\dagger}\right)\left(U Q U^{\dagger}\right)$
- I is in \mathcal{C} (since it is a group)

Is Hadamard?

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
H X H=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=Z \\
H Z H=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)=X \\
H Y H= \pm i H X Z H= \pm i(H X H)(H Z H)= \pm i Z X=-Y
\end{gathered}
$$

Is Pauli Group?

$$
\begin{gathered}
X(X) X^{\dagger}=X \\
X(Z) X^{\dagger}=-Z \\
X(Y) X^{\dagger}=-Y
\end{gathered}
$$

So, for $P, Q \in \mathcal{P}, P Q P^{\dagger}= \pm Q$

+ if $[\mathrm{P}, \mathrm{Q}]=0$
- if $\{\mathrm{P}, \mathrm{Q}\}=0$

Is CNOT?

$$
\begin{array}{r}
X \otimes I \rightarrow X \otimes X \\
Z \otimes I \rightarrow Z \otimes Z \\
I \otimes X \rightarrow I \otimes X \\
I \otimes Z \rightarrow Z \otimes Z
\end{array}
$$

$P=\operatorname{diag}(1, i)$ is also in $\mathcal{C} . \mathcal{C}$ is generated by $H, P, C N O T$.

In addition to stabilizer also interested in \bar{X}, \bar{Z}
Eigenstates of \bar{Z} (Similar for $\bar{X})$,

$$
\bar{Z}|\bar{\psi}\rangle= \pm|\bar{\psi}\rangle
$$

$$
\begin{gathered}
\left(U \bar{Z} U^{\dagger}\right) U|\bar{\psi}\rangle= \pm U|\bar{\psi}\rangle \\
\Rightarrow \bar{Z} \rightarrow U \bar{Z} U^{\dagger}
\end{gathered}
$$

	CNOT				$X \otimes I$		$I \otimes H$	CNOT		
	$I \otimes Z$	\longrightarrow	$Z \otimes Z$	\longrightarrow	$-Z \otimes Z$	\longrightarrow	$-Z \otimes X$	\longrightarrow		
\bar{X}	$\longrightarrow \otimes Y$									
\bar{Z}	\longrightarrow	$X \otimes X$	\longrightarrow	$X \otimes X$	\longrightarrow	$X \otimes Z$	\longrightarrow	$X \otimes Z$		
$Z \otimes I$	\longrightarrow	$Z \otimes I$	\longrightarrow	$-Z \otimes I$	\longrightarrow	$-Z \otimes I$	\longrightarrow	$-Z \otimes Z$		

\mathcal{C} preserves commutation relations

$$
\begin{gathered}
P Q= \pm Q P \\
U(P Q) U^{\dagger}=\left(U P U^{\dagger}\right)\left(U Q U^{\dagger}\right) \\
U(\pm 1) U^{\dagger}= \pm 1 \\
\left(U P U^{\dagger}\right)\left(U Q U^{\dagger}\right)= \pm\left(U Q U^{\dagger}\right)\left(U P U^{\dagger}\right)
\end{gathered}
$$

Suppose

$$
\begin{gathered}
X \otimes I=\bar{X}_{1} \longrightarrow Z \otimes Z \\
Z \otimes I=\bar{Z}_{1} \longrightarrow X \otimes I \\
I \otimes X=\bar{X}_{2} \longrightarrow X \otimes X \\
I \otimes Z=\bar{Z}_{2} \longrightarrow I \otimes Z
\end{gathered}
$$

Then $|00\rangle$ must go to the +1 -eigenvector of \bar{Z}_{1} and \bar{Z}_{2} :

$$
\begin{gathered}
|00\rangle \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|0\rangle \\
|01\rangle=\bar{X}_{2}|00\rangle \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|1\rangle \\
|10\rangle \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)|0\rangle
\end{gathered}
$$

$$
|11\rangle \longrightarrow-\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)|1\rangle
$$

Any transformation of \mathcal{P} that preserves commutation rules and multiplication that fixes $\pm 1, \pm i$ is a Clifford group gate.
On 2 n -dim binary vectors, linear map that preserves symplectic inner product. Symplectic maps $\cong \mathcal{C} / \mathcal{P}$

