Quantum Error Correction

Notes for lecture 9

Prepared by Casey Myers
Edited by Daniel Gottesman
February 10th, 2004

Quantum MacWilliams identity

Let $E_{d} \in\{$ Pauli operators with weight $w t=d\}$. Eg. $E_{0}=\{I\}, E_{1} \in$ $\left\{X_{1}, X_{2}, Z_{1}, Y_{1}, \cdots\right\}$.
Two Hermitian operators θ_{1}, θ_{2}

$$
\begin{align*}
A_{d} & =\frac{1}{\operatorname{tr} \theta_{1} \operatorname{tr} \theta_{2}} \sum_{E_{d}} \operatorname{tr}\left(E_{d} \theta_{1}\right) \operatorname{tr}\left(E_{d}^{\dagger} \theta_{2}\right) \tag{1}\\
B_{d} & =\frac{1}{\operatorname{tr} \theta_{1} \theta_{2}} \sum_{E_{d}} \operatorname{tr}\left(E_{d} \theta_{1} E_{d}^{\dagger} \theta_{2}\right) \tag{2}
\end{align*}
$$

For a QECC, $\theta_{1}=\theta_{2}=\pi$ (Projector on coding space).
For a stabilizer code $\pi=\frac{1}{2^{n-k}} \sum_{M \in S} M\left(\operatorname{tr} I=2^{n}, \operatorname{tr} E=0, E \neq I\right)$.

$$
\begin{align*}
A_{d} & =\frac{1}{2^{2 k}} \sum_{E_{d}}\left(\operatorname{tr}\left(\frac{1}{2^{n-k}} \sum_{M \in S} E_{d} M\right)^{2}\right) \tag{3}\\
& =\frac{1}{2^{2 k}} \frac{1}{\left(2^{n-k}\right)^{2}} \sum_{E_{d}}\left\{0 \text { if } E_{d} \notin S \text { OR } 2^{n} \text { if } E_{d} \in S\right\}^{2} \\
& =\# \text { Pauli operators of weight } d \text { in } S .
\end{align*}
$$

$$
\begin{align*}
B_{d} & =\frac{1}{2^{k}} \sum_{E_{d}} \sum_{M, N \in S} \frac{1}{2^{2(n-k)}} \operatorname{tr}\left(E_{d} M E_{d}^{\dagger} N\right) \tag{4}\\
& =\frac{1}{2^{2 n-k}} \sum_{E_{d}} \sum_{M, N \in S} \delta_{M N} 2^{n}(-1)^{C\left(M, E_{d}\right)} \\
& =\frac{1}{2^{n-k}} \sum_{E_{d}}\left[\sum_{M \in S}(-1)^{C\left(M, E_{d}\right)}\right]
\end{align*}
$$

where $C\left(M, E_{d}\right)=0$ if $\left[M, E_{d}\right]=0$ OR 1 if $\left\{M, E_{d}\right\}=0$
and $\sum_{M \in S}(-1)^{C\left(M, E_{d}\right)}=2^{n-k}$ if $\left[E_{d}, M\right]=0 \forall M \in S \Leftrightarrow E_{d} \in N(S)$ OR 0 if $E_{d} \notin N(S)$.
Suppose $E_{d} \notin N(S) \Rightarrow \exists M \in S,\left\{M, E_{d}\right\}=0$.
$N E_{d}=(-1)^{C\left(N, E_{d}\right)} E_{d} N$
$(M N) E_{d}=(-1)^{C\left(N, E_{d}\right)+1} E_{d}(M N)$
Pair $N \in S$ with $M N \in S$
1 of pair commutes with E_{d}
1 of pair anti-commutes
\Rightarrow exactly $\frac{1}{2}$ of S anti-commutes with E_{d}.
So $B_{d}=\#$ Pauli operators of weight d in $N(S)$.
For a general code with distance $d: A_{c}=B_{c}(c<d)$ (But \Leftarrow need not hold).
And $A_{d} \leq B_{d}, A_{d} \geq 0, A_{0}=B_{0}=1$.

Definition:

- Weight enumerator $A(z)=\sum_{d} A_{d} z^{d}$
- Dual weight enumerator $B(z)=\sum_{d} B_{d} z^{d}$
- Quantum MacWilliams Identity (QMWI) : $B_{z}=\frac{\operatorname{tr} \theta_{1} \operatorname{tr} \theta_{2}}{2^{n} \operatorname{tr} \theta_{1} \theta_{2}}(1+3 z)^{n} A\left(\frac{1-z}{1+3 z}\right)$

Use the QMWI to give "linear programming bounds"
For $\theta_{1}=\theta_{2}=\pi, \operatorname{tr} \pi=2^{k}$

$$
B(z)=\frac{1}{2^{n-k}}(1+3 z)^{n} A\left(\frac{1-z}{1+3 z}\right)
$$

For classical weight enumerators, distance $d \Rightarrow A_{c}=B_{c}=0,0<c<d$.
Can be $\neq 0$ in quantum case due to degenerate codes.
If $A_{c}=B_{c}=0, \forall 0<c<d$, code is pure, otherwise impure.

Fault Tolerance

1. How do we convert one encoded state to a different encoded state? (without leaving the code space)
2. Error propagation

Even perfect gates can cause pre-existing errors to spread.
Tensor product U of one-qubit gates takes E (error) to $U E U^{\dagger}$, which has same weight as E.

Transversal operations

j th qubit of each block only interacts with j th qubit of other blocks.
E.g. 2-qubit error becomes 2 2-qubit errors in separate blocks. Must line up qubits in the same way, otherwise causes interactions of "neighbours".
E.g. \bar{X} and \bar{Z} operations.

Look at \mathcal{C}
Hadamard $H: X \leftrightarrow Z$

M_{1}	X	X	X	X	I	I	I
M_{2}	X	X	I	I	X	X	I
M_{3}	X	I	X	I	X	I	X
M_{4}	Z	Z	Z	Z	I	I	I
M_{5}	Z	Z	I	I	Z	Z	I
M_{6}	Z	I	Z	I	Z	I	Z
\bar{X}	X						
\bar{Z}	Z						

$H^{\otimes 7}$ takes S into itself (for 7-qubit code), and $H^{\otimes 7} \bar{X} H^{\otimes 7}=\bar{Z}, H^{\otimes 7} \bar{Z} H^{\otimes 7}=$ \bar{X}. So $H^{\otimes 7}$ performs encoded $H=\bar{H}$.

Phase gate $P=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right) . P: X \rightarrow Y, Z \rightarrow Z$.
$P^{\otimes 7}: S \rightarrow S$
$P^{\otimes 7} \bar{Z}\left(P^{\dagger}\right)^{\otimes 7}=\bar{Z}$
$P^{\otimes 7} \bar{X}\left(P^{\dagger}\right)^{\otimes 7}=Y \otimes Y \otimes \cdots \otimes Y=-\bar{Y} . \bar{Y}= \pm i \overline{X Z}, \bar{Y}^{\otimes 7}=(\pm i)^{7}(\overline{X Z})$
$\Rightarrow P^{\otimes 7}$ does logical P^{\dagger}.

