Quantum Error Correction Notes for lecture 9

Prepared by Casey Myers Edited by Daniel Gottesman

February 10th, 2004

Quantum MacWilliams identity

Let $E_d \in \{\text{Pauli operators with weight } wt = d\}$. Eg. $E_0 = \{I\}, E_1 \in \{X_1, X_2, Z_1, Y_1, \cdots\}$.

Two Hermitian operators θ_1, θ_2

$$A_d = \frac{1}{\mathrm{tr}\theta_1 \mathrm{tr}\theta_2} \sum_{E_d} \mathrm{tr}(E_d \theta_1) \mathrm{tr}(E_d^{\dagger} \theta_2) \tag{1}$$

$$B_d = \frac{1}{\mathrm{tr}\theta_1\theta_2} \sum_{E_d} \mathrm{tr} \left(E_d \theta_1 E_d^{\dagger} \theta_2 \right)$$
(2)

For a QECC, $\theta_1 = \theta_2 = \pi$ (Projector on coding space). For a stabilizer code $\pi = \frac{1}{2^{n-k}} \sum_{M \in S} M$ (tr $I = 2^n$, tr $E = 0, E \neq I$).

$$A_d = \frac{1}{2^{2k}} \sum_{E_d} \left(\operatorname{tr}\left(\frac{1}{2^{n-k}} \sum_{M \in S} E_d M\right)^2 \right)$$

$$= \frac{1}{2^{2k}} \frac{1}{(2^{n-k})^2} \sum_{E_d} \{ 0 \text{ if } E_d \notin S \text{ OR } 2^n \text{ if } E_d \in S \}^2$$

$$= \# \text{ Pauli operators of weight } d \text{ in } S.$$

$$(3)$$

$$B_{d} = \frac{1}{2^{k}} \sum_{E_{d}} \sum_{M,N \in S} \frac{1}{2^{2(n-k)}} \operatorname{tr} \left(E_{d} M E_{d}^{\dagger} N \right)$$

$$= \frac{1}{2^{2n-k}} \sum_{E_{d}} \sum_{M,N \in S} \delta_{MN} 2^{n} (-1)^{C(M,E_{d})}$$

$$= \frac{1}{2^{n-k}} \sum_{E_{d}} \left[\sum_{M \in S} (-1)^{C(M,E_{d})} \right]$$
(4)

where $C(M, E_d) = 0$ if $[M, E_d] = 0$ OR 1 if $\{M, E_d\} = 0$ and $\sum_{M \in S} (-1)^{C(M, E_d)} = 2^{n-k}$ if $[E_d, M] = 0 \forall M \in S \Leftrightarrow E_d \in N(S)$ OR 0 if $E_d \notin N(S)$. Suppose $E_d \notin N(S) \Rightarrow \exists M \in S$, $\{M, E_d\} = 0$. $NE_d = (-1)^{C(N, E_d)} E_d N$ $(MN)E_d = (-1)^{C(N, E_d)+1} E_d(MN)$ Pair $N \in S$ with $MN \in S$ 1 of pair commutes with E_d 1 of pair anti-commutes \Rightarrow exactly $\frac{1}{2}$ of S anti-commutes with E_d . So $B_d = \#$ Pauli operators of weight d in N(S). For a general code with distance d: $A_c = B_c$ (c < d) (But \Leftarrow need not hold). And $A_d \leq B_d$, $A_d \geq 0$, $A_0 = B_0 = 1$.

Definition:

- Weight enumerator $A(z) = \sum_{d} A_{d} z^{d}$
- Dual weight enumerator $B(z) = \sum_{d} B_{d} z^{d}$
- Quantum MacWilliams Identity (QMWI) : $B_z = \frac{\mathrm{tr}\theta_1 \mathrm{tr}\theta_2}{2^n \mathrm{tr}\theta_1 \theta_2} (1+3z)^n A(\frac{1-z}{1+3z})$

Use the QMWI to give "linear programming bounds" For $\theta_1 = \theta_2 = \pi$, tr $\pi = 2^k$

$$B(z) = \frac{1}{2^{n-k}}(1+3z)^n A\left(\frac{1-z}{1+3z}\right)$$

For classical weight enumerators, distance $d \Rightarrow A_c = B_c = 0$, 0 < c < d. Can be $\neq 0$ in quantum case due to degenerate codes. If $A_c = B_c = 0, \forall 0 < c < d$, code is pure, otherwise impure.

Fault Tolerance

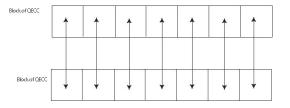
1. How do we convert one encoded state to a different encoded state? (without leaving the code space)

2. Error propagation

Even perfect gates can cause pre-existing errors to spread.

Tensor product U of one-qubit gates takes E (error) to UEU^{\dagger} , which has same weight as E.

Transversal operations



*j*th qubit of each block only interacts with *j*th qubit of other blocks. E.g. 2-qubit error becomes 2 2-qubit errors in separate blocks. Must line up qubits in the same way, otherwise causes interactions of "neighbours". E.g. \overline{X} and \overline{Z} operations. Look at \mathcal{C} Hadamard $H: X \leftrightarrow Z$

M_1	X	X	X	X	Ι	Ι	Ι
M_2	X	X	Ι	Ι	X	X	Ι
M_3	X	Ι	X	Ι	X	Ι	X
M_4	Z	Z	Z	Z	Ι	Ι	Ι
M_5	Z	Z	Ι	Ι	Z	Z	Ι
M_6	Z	Ι	Z	Ι	Z	Ι	Z
\overline{X}	X	X	X	X	X	X	X
M_1 M_2 M_3 M_4 M_5 M_6 \overline{X} \overline{Z}	Z	Z	Z	Z	Z	Z	Z

 $H^{\otimes 7}$ takes S into itself (for 7-qubit code), and $H^{\otimes 7}\overline{X}H^{\otimes 7} = \overline{Z}, H^{\otimes 7}\overline{Z}H^{\otimes 7} = \overline{X}$. So $H^{\otimes 7}$ performs encoded $H = \overline{H}$.

Phase gate $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$. $P: X \to Y, Z \to Z$. $P^{\otimes 7}: S \to S$ $P^{\otimes 7}\overline{Z}(P^{\dagger})^{\otimes 7} = \overline{Z}$ $P^{\otimes 7}\overline{X}(P^{\dagger})^{\otimes 7} = Y \otimes Y \otimes \cdots \otimes Y = -\overline{Y}$. $\overline{Y} = \pm i\overline{XZ}, \overline{Y}^{\otimes 7} = (\pm i)^{7}(\overline{XZ})$ $\Rightarrow P^{\otimes 7}$ does logical P^{\dagger} .