
Solution Set #3

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., Feb. 24

Problem 1. Clifford Group Manipulations

a) We wish to calculate (C-U)P (C-U†), where C-U is either the controlled-Z gate or the controlled-Y
gate, and P runs over X ⊗ I, I ⊗X, Z ⊗ I, and I ⊗ Z.

We can see that C-Z, which is a diagonal matrix, commutes with Z⊗ I and I ⊗Z, which are also both
diagonal. C-Z also acts the same way on the first or second qubit (phase of −1 iff both are 1), so we
only need calculate its action on X ⊗ I. We do so by considering the overall matrix acting on a basis
state (keeping close attention to phases):

(C-Z)(X ⊗ I)(C-Z)|a, b〉 = (−1)ab(C-Z)(X ⊗ I)|a, b〉 (1)
= (−1)ab(C-Z)|a⊕ 1, b〉 (2)
= (−1)ab+(a⊕1)b|a⊕ 1, b〉 (3)
= (−1)b|a⊕ 1, b〉. (4)

We can recognize this matrix action as X ⊗ Z. Thus, under C-Z:

X ⊗ I → X ⊗ Z (5)
Z ⊗ I → Z ⊗ I (6)
I ⊗X → Z ⊗X (7)
I ⊗ Z → I ⊗ Z. (8)

Thus, the C-Z gate is in the Clifford group.

We have to do a bit more work to calculate the behavior of the C-Y gate. It commutes with Z ⊗ I,
but not with X ⊗ I:

(C-Y)(X ⊗ I)(C-Y)|a, b〉 = ia(−1)ab(C-Y)(X ⊗ I)|a, b⊕ a〉 (9)
= ia(−1)ab(C-Y)|a⊕ 1, b⊕ a〉 (10)
= ia+(a⊕1)(−1)ab+(a⊕1)(a⊕b)|a⊕ 1, b⊕ 1〉 (11)
= i(−1)b|a⊕ 1, b⊕ 1〉. (12)

The last equality follows because one of a and (a⊕ 1) is always 0 and the other is 1. This operation is
identifiable as X ⊗ Y . For I ⊗X:

(C-Y)(I ⊗X)(C-Y)|a, b〉 = ia(−1)ab(C-Y)(I ⊗X)|a, b⊕ a〉 (13)
= ia(−1)ab(C-Y)|a, b⊕ a⊕ 1〉 (14)
= i2a(−1)ab+a(b⊕a⊕1)|a, b⊕ 1〉 (15)
= (−1)a|a, b⊕ 1〉. (16)
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We can thus identify this operation as Z ⊗X. Finally, for I ⊗ Z:

(C-Y)(I ⊗ Z)(C-Y)|a, b〉 = ia(−1)ab(C-Y)(I ⊗ Z)|a, b⊕ a〉 (17)
= ia(−1)ab+(a⊕b)(C-Y)|a, b⊕ a〉 (18)
= i2a(−1)ab+(a⊕b)+a(a⊕b)|a, b〉 (19)
= (−1)a+b|a, b〉. (20)

This is Z ⊗ Z. Thus, under C-Y:

X ⊗ I → X ⊗ Y (21)
Z ⊗ I → Z ⊗ I (22)
I ⊗X → Z ⊗X (23)
I ⊗ Z → Z ⊗ Z. (24)

Thus, C-Y is also in the Clifford group.

b) We start with the standard values for the Xs and Zs:

X1 X ⊗ I ⊗ I
X2 I ⊗X ⊗ I
X3 I ⊗ I ⊗X
Z1 Z ⊗ I ⊗ I
Z2 I ⊗ Z ⊗ I
Z3 I ⊗ I ⊗ Z.

(25)

After the first CNOT gate, we have:
X1 X ⊗ I ⊗ I
X2 X ⊗X ⊗ I
X3 I ⊗ I ⊗X
Z1 Z ⊗ Z ⊗ I
Z2 I ⊗ Z ⊗ I
Z3 I ⊗ I ⊗ Z.

(26)

After the Hadamard gate, we have:
X1 X ⊗ I ⊗ I
X2 X ⊗ Z ⊗ I
X3 I ⊗ I ⊗X
Z1 Z ⊗X ⊗ I
Z2 I ⊗X ⊗ I
Z3 I ⊗ I ⊗ Z.

(27)

After the first C-Z gate, we have:
X1 X ⊗ I ⊗ I
X2 X ⊗ Z ⊗ I
X3 I ⊗ Z ⊗X
Z1 Z ⊗X ⊗ Z
Z2 I ⊗X ⊗ Z
Z3 I ⊗ I ⊗ Z.

(28)

After the second C-Z gate, we have:
X1 X ⊗ Z ⊗ I
X2 X ⊗ I ⊗ I
X3 I ⊗ Z ⊗X
Z1 I ⊗X ⊗ Z
Z2 Z ⊗X ⊗ Z
Z3 I ⊗ I ⊗ Z.

(29)
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And then, after the final CNOT, we have:

X1 X ⊗ Z ⊗X
X2 X ⊗ I ⊗X
X3 I ⊗ Z ⊗X
Z1 Z ⊗X ⊗ Z
Z2 I ⊗X ⊗ Z
Z3 Z ⊗ I ⊗ Z.

(30)

c) We notice that the initial state |000〉 maps to a +1-eigenstate of the three final Z operators, namely
(|000〉+ |010〉)/

√
2. Thus, the first column of the matrix has entries 1/

√
2 in the 000 and 010 rows and

is 0 elsewhere. Applying the X operators, we get the other columns:

1√
2



1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 1
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 1 0 −1 0 0 0


. (31)

d) The evolution of X is the same as the X1 above, and the evolution of Z is the same as Z1 above. The
stabilizer generator I ⊗X ⊗X becomes X ⊗Z ⊗ I, and the generator I ⊗Z ⊗Z becomes Z ⊗X ⊗ I.
Thus, we find:

X → X ⊗ Z ⊗X = I ⊗ I ⊗X (32)
Z → Z ⊗X ⊗ Z = I ⊗ I ⊗ Z. (33)

That is, the logical qubit ends up in the third register after this circuit.

Problem 2. Generating the Clifford Group

a) This follows immediately from a lemma I proved in class: If we let ui be the 2n-bit binary vector
corresponding to Xi and vi be the 2n-bit binary vector corresponding to Zi, then there exists a 2n-bit
binary vector w with symplectic inner product si with ui and symplectic inner product ti with vi. Then
the Pauli operator E corresponding to w changes the phases of Xi 7→ (−1)siXi and Zi 7→ (−1)tiZi.
Then if U changes Xi 7→ Xi, Zi 7→ Zi, then EU is the desired Clifford group operation.

b) We start with H (X 7→ Z, Y 7→ −Y , and Z 7→ X) and P (X 7→ Y , Y 7→ −X, and Z 7→ Z). These
perform the permutations (13) and (12) on the ordered set (X,Y, Z). These two permutations generate
all of S3, so the other 4 are definitely possible. I give explicit constructions below:

• (): No change; this is the identity operation.

• (23): HPH, maps X 7→ X, Z 7→ −Y (so Y 7→ Z). Call this gate Q.

• (123): HP , maps X 7→ −Y , Z 7→ X (so Y 7→ Z). Call this gate T .

• (132): PH, maps X 7→ Z, Z 7→ Y (so Y 7→ X). This gate is equal to XT 2.

Also note that P 2 = Z, HP 2H = X, and HP 2HP 2 = −iY .

c) The SWAP gate is constructed via the following circuit:
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sg sg sg
We follow the evolution of Xi and Zi as follows:

X1 X ⊗ I
X2 I ⊗X
Z1 Z ⊗ I
Z2 I ⊗ Z

→

X ⊗X
I ⊗X
Z ⊗ I
Z ⊗ Z

→

I ⊗X
X ⊗X
Z ⊗ Z
Z ⊗ I

→

I ⊗X
X ⊗ I
I ⊗ Z
Z ⊗ I

(34)

The overall operation can thus be seen to be the SWAP gate.

The C-Z gate can be written as just (I ⊗ H)CNOT(I ⊗ H). The C-Y gate can be written as (I ⊗
P )CNOT(I ⊗ P 3) (with P 3 = P †). Alternatively, we could expand C-Y = P (C-Z)CNOT, and then
expand C-Z as above. (We have a P in this expansion because Y = iXZ, not XZ.)

d) I picked redundant notation for this problem; let us use R0 and R1 instead of the Pauli operations P
and Q. (They still get mapped to X ⊗ P ′ and Z ⊗Q′.)

First, note that since {R0, R1} = 0, there exists at least one qubit on which R0 and R1 differ, and
on which neither is the identity. Then by performing a series of SWAPs, we can make this register
the first qubit. Suppose R0 on this register is A and R1 on this register is B. Then by performing a
one-qubit Clifford operation, as per part b, we know that we can map A 7→ X and B 7→ Z, as A 6= B
and we can perform all possible permutations of X, Y , and Z. The net effect is to map R0 7→ X ⊗ P ′

(for some Pauli P ′) and R1 7→ Z ⊗Q′ (for some Pauli Q′).

e) We wish to map X1 7→ X ⊗ P ′ and Z1 7→ Z ⊗ Q′ for the specific P ′ and Q′ we are given. Now,
one feature CNOT, C-Y, and C-Z all have in common is that they leave Z ⊗ I invariant. Thus, if we
perform CNOT from qubit 1 to qubit i (i > 1) whenever the ith qubit of X ⊗ P ′ is X, perform C-Y
whenever the ith qubit of X ⊗ P ′ is Y , and perform C-Z whenever the ith qubit of X ⊗ P ′ is Z, then
we map X1 7→ X ⊗P ′ and Z1 7→ Z⊗ I. Then let us perform H on the first qubit so that X1 7→ Z⊗P ′
and Z1 7→ X ⊗ I, and do the same procedure for Q′.

This maps Z1 7→ X ⊗Q′, but what happens to the image of X1? All of these gates leave Z ⊗ I alone,
but many of them act on the second qubit. However, we note the following fact: CNOT, C-Y, and
C-Z leave I ⊗X, I ⊗ Y , and I ⊗ Z alone. That is, the controlled-E operation leaves I ⊗ E invariant
when E is a Pauli matrix. Furthermore, the controlled-E operation maps I ⊗ F to Z ⊗ F whenever
E and F are distinct nonidentity Pauli operators. Finally, X1 and Z1 anticommute, but so do X and
Z, so P ′ and Q′ anticommute. Therefore P ′ and Q′ contain different nonidentity Pauli matrices on an
even number of places, so the controlled gates for Q′ produce an even number of Zs in the first qubit
of the image of X1. They therefore cancel out, and X1 7→ Z ⊗ P ′.

Then we again perform H on the first qubit, and we have the desired transformation. Since C-Y and
C-Z are both products of H, P , and CNOT by part c, we have the desired decomposition.

f) Xi commutes with both X1 and Z1, so U†1 (Xi) commutes with both U†1 (X1) = X1 and U†1 (Z1) = Z1.
Any operator that commutes with both X1 and Z1 must be of the form I⊗Ri. Similarly, Zi commutes
with both X1 and Z1, so U†1 (Zi) must be of the form I ⊗ Si.

g) When i 6= j, [Xi, Xj ] = 0, so the images under U†1 also commute, meaning [Ri, Rj ] = 0. Similarly,
[Zi, Zj ] = 0, so [Si, Sj ] = 0, and [Xi, Zj ] = 0, so [Ri, Sj ] = 0. In addition, {Xi, Zi} = 0, so the images
under U†1 must anticommute, meaning {Ri, Si} = 0.
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Suppose then that V2 acts on n−1 qubits mapsXi 7→ Ri+1 and Zi 7→ Si+1. (So I⊗V2 mapsXi 7→ I⊗Ri

and Zi 7→ I ⊗ Si.) Then U1(I ⊗ V2) performs the transformation

X1 → X1 → X ⊗ P ′ = X1 (35)
Z1 → Z1 → Z ⊗Q′ = Z1 (36)
Xi → I ⊗Ri → Xi (i > 1) (37)
Zi → I ⊗ Si → Zi (i > 1), (38)

as desired.

h) Suppose we are given an arbitrary transformation Xi 7→ Xi and Zi 7→ Zi on n qubits, and suppose we
already know how to break down any (n − 1)-qubit Clifford group operation into H, P , and CNOT.
Then by part d, there exists some series W1 of H, P , and CNOT that maps X1 7→ X ⊗ P ′ and
Z1 7→ Z ⊗ Q′. Suppose W1 maps Xi 7→ X

′
i and Zi 7→ Z

′
i. We know by part g that there exists a

Clifford group operation U1(I ⊗ V2) which maps Xi 7→ X
′
i and Zi 7→ Z

′
i. Thus, W †

1U1(I ⊗ V2) maps
Xi 7→ Xi and Zi 7→ Zi. We know how to write U1 and W †

1 as products of H, P , and CNOT, and
by induction, V2, which acts on n − 1 qubits, is a Clifford group operation and can be written as a
produt of H, P , and CNOT also. Since we proved the base case of n = 1 in part b, this completes the
induction.

Counting gates, we find that W1 involves only a constant number of gates, and U1 involves O(n) gates.
Since we need n recursion steps (getting U2, U3, . . . , Un), we have a total of O(n2) gates.

i) We wish to find a Clifford group operation mapping

Z1 → X ⊗ Z ⊗ Z ⊗X ⊗ I (39)
X1 → Z ⊗ I ⊗ Z ⊗ I ⊗ I (40)
Z2 → I ⊗X ⊗ Z ⊗ Z ⊗X (41)
X2 → X ⊗ Z ⊗X ⊗ Y ⊗X (42)
Z3 → X ⊗ I ⊗X ⊗ Z ⊗ Z (43)
X3 → Z ⊗ Y ⊗ Z ⊗ I ⊗ Y (44)
Z4 → Z ⊗X ⊗ I ⊗X ⊗ Z (45)
X4 → Z ⊗ Z ⊗ Z ⊗ Y ⊗X (46)
Z5 → Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z (47)
X5 → X ⊗X ⊗X ⊗X ⊗X. (48)

We don’t particularly care what happens to X1, X2, X3, or X4, but we had to choose something, and
they must have the right commutation relationships with the other operators. I chose values which
disagreed with the corresponding Zis on the ith position to minimize the number of SWAPs necessary
in the circuit.

We can choose W1 = H1, so that X1 7→ X ⊗ I ⊗ Z ⊗ I ⊗ I and Z1 7→ Z ⊗ Z ⊗ Z ⊗X ⊗ I. Then we
should choose U1 = H1 C-Z(1, 2) C-Z(1, 3) CNOT(1, 4) H1 C-Z(1, 3). We are left to perform I ⊗ V2

which maps

Z2 → I ⊗X ⊗ Z ⊗ Z ⊗X (49)
X2 → −I ⊗ I ⊗ Y ⊗ Z ⊗X (50)
Z3 → I ⊗ Z ⊗ Y ⊗ Y ⊗ Z (51)
X3 → I ⊗ Y ⊗ Z ⊗ I ⊗ Y (52)
Z4 → I ⊗X ⊗ I ⊗X ⊗ Z (53)
X4 → I ⊗ Z ⊗ Z ⊗ Y ⊗X (54)
Z5 → I ⊗ Z ⊗ Z ⊗ Z ⊗ Z (55)
X5 → −I ⊗ Y ⊗ Y ⊗ I ⊗X. (56)
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Now, despite our efforts in choosing the Xis, we still have to perform a SWAP operation to get X2

and Z2 to disagree on the second position: We must choose W2 = P2 SWAP(2, 3). Then X2 7→
X ⊗ I ⊗ Z ⊗ X and Z2 7→ Z ⊗ X ⊗ Z ⊗ X (omitting the first qubit). We should therefore choose
U2 = H2 CNOT(2, 3) C-Z(2, 4) CNOT(2, 5) H2 C-Z(2, 4) CNOT(2, 5). Then, to find I⊗ I⊗V3, we act
on the images of V2 by U†2W2 to get

Z3 → −I ⊗ I ⊗ Z ⊗ Y ⊗ Z (57)
X3 → −I ⊗ I ⊗ Z ⊗ Z ⊗ Z (58)
Z4 → I ⊗ I ⊗X ⊗X ⊗ Z (59)
X4 → −I ⊗ I ⊗ Y ⊗X ⊗ I (60)
Z5 → −I ⊗ I ⊗ Y ⊗ I ⊗ Y (61)
X5 → I ⊗ I ⊗ Y ⊗ I ⊗X. (62)

For W3, we should choose W3 = T3 X3 SWAP(3, 4). (The X makes the signs positive for X3 and
Z3.) Then X3 7→ I ⊗ I ⊗ X ⊗ Z ⊗ Z and Z3 7→ I ⊗ I ⊗ Z ⊗ Z ⊗ Z. We then choose U3 =
H3 C-Z(3, 4) C-Z(3, 5) H3 C-Z(3, 4) C-Z(3, 5). We act by U†3W3 to find for the action of I ⊗ I ⊗ I ⊗V4:

Z4 → −I ⊗ I ⊗ I ⊗ Y ⊗ I (63)
X4 → −I ⊗ I ⊗ I ⊗X ⊗ Z (64)
Z5 → −I ⊗ I ⊗ I ⊗ Y ⊗ Y (65)
X5 → I ⊗ I ⊗ I ⊗ Y ⊗X. (66)

We now pick W4 = Q4 Z4, meaning X4 7→ I ⊗ I ⊗ I ⊗ X ⊗ Z and Z 7→ I ⊗ I ⊗ I ⊗ Z ⊗ I. Then
U4 = C-Z(4, 5), and the action of I ⊗ I ⊗ I ⊗ I ⊗ V5 is:

Z5 → I ⊗ I ⊗ I ⊗ I ⊗ Y (67)
X5 → −I ⊗ I ⊗ I ⊗ I ⊗X. (68)

We then recognize V5 as Q5 Y5 = H5 P5 H5 Y5.

Now we can put everything together: The overall encoding operation will beW †
1U1W

†
2U2W

†
3U3W

†
4U4V5,

which has the following circuit:

Y Q

s
Z

Q† Z

s
Z

Z

H s
Z

Z

H T † X
@

@�
�

s
Zg

H sg
Zg

P †
@

@�
�

s
Z

H s
Z

Zg

|0〉

|0〉

|0〉

|0〉

|ψ〉

We could, of course, replace C-Z, Q, and T in this circuit with their constructions from H, P , and
CNOT to get a circuit involving only those gates.
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Problem 3. Using the Quantum MacWilliams Identity

a) When the QECC has a basis |i〉 of encoded states, we can write

Ad =
1

22k

∑
Ed

∣∣∣∣∣∑
i

〈i|Ed|i〉

∣∣∣∣∣
2

, (69)

Bd =
1
2k

∑
Ed

∑
i,j

∣∣〈i|Ed|j〉
∣∣2 . (70)

Clearly both of these are nonnegative numbers. When d = 0, the only term in the sum is Ed = I, and
〈i|Ed|j〉 = δij . Thus, A0 = B0 = 1.

The Cauchy-Schwarz inequality says that

|~x · ~y|2 ≤ |~x|2|~y|2. (71)

Let αij = 〈i|Ec|j〉. Let ~x be a 22k-dimensional complex vector with entries αij , and let ~y be a 22k-
dimensional vector with entries equal to (1/2k)δij (that is, 0 when i 6= j and 1/2k otherwise). Then
we have ∣∣∣∣∣∑

ii

αii/2k

∣∣∣∣∣
2

≤
∑
ij

|αij |2/2k, (72)

which implies that Ad ≤ Bd.

b) If the code has distance d, then the QECC conditions say that for wt(E) < d,

〈i|E|j〉 = C(E)δij . (73)

Thus, for c < d,

Ac =
1

22k

∑
Ec

22k|C(Ec)|2, (74)

Bc =
1
2k

∑
Ec

2k|C(Ec)|2, (75)

and Ac = Bc.

c) The quantum MacWilliams identity tells us

B(z) = B0 +B1z +B2z
2 +B3z

3 (76)

=
1
4
(1 + 3z)3A

(
1− z

1 + 3z

)
(77)

=
1
4

[
A0(1 + 3z)3 +A1(1− z)(1 + 3z)2 +A2(1− z)2(1 + 3z) +A3(1− z)3

]
. (78)

We calculate the coefficients of powers of z and compare, getting the following constraints:

4B0 = A0 +A1 +A2 +A3 (79)
4B1 = 9A0 + 5A1 +A2 − 3A3 (80)
4B2 = 27A0 + 3A1 − 5A2 + 3A3 (81)
4B3 = 27A0 − 9A1 + 3A2 −A3. (82)
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With the additional constraints B0 = A0 = 1, B1 = A1, B2 ≥ A2, and B3 ≥ A3, we are reduced to
two linear equalities and two linear inequalities for three variables:

A1 + A2 + A3 = 3 (83)
A1 + A2 − 3A3 = −9 (84)

3A1 − 9A2 + 3A3 ≥ −27 (85)
−9A1 + 3A2 − 5A3 ≥ −27. (86)

The first two equations tell us that A3 = 3 and A2 = −A1. The only possible solution with both A1

and A2 nonnegative is therefore (A0, A1, A2, A3) = (1, 0, 0, 3). Indeed, this solution satisfies the two
inequalities.

Problem 4. The Quantum Shadow Enumerator

a) The definition of Shd is

Shd =
1
2k

∑
Ed

Tr(EdΠE
†
dY

⊗nΠ∗Y ⊗n). (87)

For a general QECC,

Shd =
1
2k

∑
Ed

∑
i,j

〈i|E†dY
⊗n|j∗〉〈j∗|Y ⊗nEd|i〉 (88)

=
1
2k

∑
Ed

∑
i,j

|〈j∗|Y ⊗nEd|i〉|2, (89)

where |j∗〉 is the state vector of |j〉 with the coefficients in the standard basis complex-conjugated.
This is still a perfectly valid state vector, so the absolute value squared of 〈j∗|Y ⊗nEd|i〉 remains a
nonnegative number, and Shd ≥ 0.

For a stabilizer code, we write Π =
∑

M∈S M/2n−k, so Π∗ =
∑

M∈S(−1)yMM/2n−k, where yM is the
number of Y operators in the tensor product description of M . Then

Y ⊗nΠ∗Y ⊗n =
1

2n−k

∑
M∈S

(−1)xM+yM+zMM =
1

2n−k

∑
M∈S

(−1)wt(M)M, (90)

where xM is the number of Xs in M and zM is the number of Zs in M . Also,

EdΠE
†
d =

1
2n−k

∑
M∈S

(−1)c(M,Ed)M, (91)

where c(M,Ed) is the symplectic inner product between M and Ed — that is, 0 when they commute
and 1 when they anticommute. Therefore,

Tr(EdΠE
†
dY

⊗nΠ∗Y ⊗n) =
2n

22n−2k

∑
M∈S

(−1)c(M,Ed)+wt(M). (92)

Suppose Ed ∈ Sh(S). Then c(M,Ed) + wt(M) = 0 mod 2 for all M ∈ S, and the trace gives 2k.

Suppose on the other hand, Ed 6∈ Sh(S). Then ∃M ∈ S with c(M,Ed) + wt(M) = 1 mod 2. Let N be
another element of S. We know M and N commute. Let us suppose M and N both act nontrivially
on some set of l qubits, and that wt(M) = m+ l, wt(N) = n+ l. Then wt(MN) = m+ n+ l′, where
l′ is the number of qubits on which M and N act nontrivially but differently (e.g., M is X and N is
Z). However, we know that l′ must be even, since M and N commute, so

wt(MN) mod 2 = m+ n = wt(M) + wt(N)− 2l = wt(M) + wt(N) mod 2. (93)
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Also, c(MN,Ed) = c(M,Ed)+ c(N,Ed), so the value of c(MN,Ed)+wt(MN) is opposite the value of
c(N,Ed)+wt(N). Therefore, in this case, exactly half of the elements of S satisfy c(M,Ed)+wt(M) =
1 mod 2 and half satisfy c(M,Ed) + wt(M) = 0 mod 2, so Tr(EdΠE

†
dY

⊗nΠ∗Y ⊗n) = 0.
That is, the trace is 0 when Ed 6∈ Sh(S) and it is 2k when Ed ∈ Sh(S). Thus, Shd is equal to the
number of elements of Sh(S) of weight d.

b) Suppose S is real, so all operators in S contain an even number of Y s. Then elements of Seven contain
an even combined number of Xs and Zs, and elements of Sodd contain an odd combined number of
Xs and Zs. But Y ⊗n will commute with an operator M iff the combined number of Xs and Zs is
even. Therefore, Y ⊗n commutes with all elements of Seven and anticommutes with all elements of Sodd,
meaning Y ⊗n ∈ Sh(S).
Now suppose Y ⊗n ∈ Sh(S). This means that elements of Seven contain an even combined number of
Xs and Zs, and elements of Sodd contain an odd combined number of Xs and Zs. But that means
that elements of both Seven and Sodd contain an even number of Y s, so the code is real.

c) Using the hint,

Shn = lim
z→∞

Sh(z)/zn =
3n

2n−k
A(1/3). (94)

But A(1/3) =
∑

dAd(1/3)d, and A0 = 1, Ad ≥ 0, so A(1/3) > 0. Therefore, Shn > 0. By part a, we
know that for a stabilizer code, Shn is an integer, and is equal to the number of elements of weight n
in Sh(S), so in particular, Sh(S) contains at least one element of maximum weight.

d) The main observation is that when U is a single-qubit operation, then for all M ∈ P, U(M) has
the same weight as M . Thus, U(Seven) = [U(S)]even and U(Sodd) = [U(S)]odd. Then Sh(U(S))
contains those F s that commute with elements of U(Seven) and anticommute with elements of U(Sodd).
But if F = U(E), then this is equivalent to saying that E commutes with elements of Seven and
anticommutes with elements of Sodd. That is, F ∈ Sh(U(S)) iff F = U(E), with E ∈ Sh(S). Therefore,
Sh(U(S)) = U(Sh(S)).
If U is a CNOT or other multiple-qubit operation, it can change the weight of operators, and therefore
the relation need not hold. So, for instance, the [[2, 0]] stabilizer code with generators Z ⊗ I and I ⊗Z
has shadow {X ⊗X,Y ⊗ Y,X ⊗ Y, Y ⊗X}. After a CNOT, we have the same stabilizer, but applying
the CNOT to the old shadow gives us {X ⊗ I,−X ⊗Z, Y ⊗X,X ⊗ Y }, and the first two elements are
not in the shadow any more.
By part c, Sh(S) always contains at least one element E of weight n. Via some tensor product
U of one-qubit Clifford group operations we can transform E into Y ⊗n (cf. problem 2b). Thus,
U(Sh(S)) = Sh(U(S)) contains Y ⊗n. By part b, this implies that U(S) is a real code; this shows that
S is equivalent to a real code. (Recall that equivalent codes are related by permutations of the qubits,
which we do not use here, and single-qubit unitary operations.)

e) We find

Sh(z) = Sh0 + Sh1z + Sh2z
2 + Sh3z

3 (95)

=
1
4

[
A0(1 + 3z)3 +A1(z − 1)(1 + 3z)2 +A2(z − 1)2(1 + 3z) +A3(z − 1)3

]
. (96)

As before, we match the coefficients of powers of z to get

4Sh0 = A0 −A1 +A2 −A3 (97)
4Sh1 = 9A0 − 5A1 +A2 + 3A3 (98)
4Sh2 = 27A0 − 3A1 − 5A2 − 3A3 (99)
4Sh3 = 27A0 + 9A1 + 3A2 +A3. (100)

Recalling that the only solution from 3c was (A0, A1, A2, A3) = (1, 0, 0, 3), we see that the shadow
enumerators would give us (Sh0, Sh1, Sh2, Sh3) = (−2, 18, 18, 30)/4, but since Sh0 < 0, they do not
satisfy the appropriate constraints, and therefore no [[3, 1, 2]] QECC can exist.
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