Solution Set \#3

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., Feb. 24

Problem 1. Clifford Group Manipulations

a) We wish to calculate $(\mathrm{C}-\mathrm{U}) P\left(\mathrm{C}-\mathrm{U}^{\dagger}\right)$, where $\mathrm{C}-\mathrm{U}$ is either the controlled- Z gate or the controlled- Y gate, and P runs over $X \otimes I, I \otimes X, Z \otimes I$, and $I \otimes Z$.
We can see that C-Z, which is a diagonal matrix, commutes with $Z \otimes I$ and $I \otimes Z$, which are also both diagonal. C-Z also acts the same way on the first or second qubit (phase of -1 iff both are 1), so we only need calculate its action on $X \otimes I$. We do so by considering the overall matrix acting on a basis state (keeping close attention to phases):

$$
\begin{align*}
(\mathrm{C}-\mathrm{Z})(X \otimes I)(\mathrm{C}-\mathrm{Z})|a, b\rangle & =(-1)^{a b}(\mathrm{C}-\mathrm{Z})(X \otimes I)|a, b\rangle \tag{1}\\
& =(-1)^{a b}(\mathrm{C}-\mathrm{Z})|a \oplus 1, b\rangle \tag{2}\\
& =(-1)^{a b+(a \oplus 1) b}|a \oplus 1, b\rangle \tag{3}\\
& =(-1)^{b}|a \oplus 1, b\rangle . \tag{4}
\end{align*}
$$

We can recognize this matrix action as $X \otimes Z$. Thus, under C-Z:

$$
\begin{array}{rll}
X \otimes I & \rightarrow X \otimes Z \\
Z \otimes I & \rightarrow & Z \otimes I \\
I \otimes X & \rightarrow Z \otimes X \\
I \otimes Z & \rightarrow I \otimes Z . \tag{8}
\end{array}
$$

Thus, the C-Z gate is in the Clifford group.
We have to do a bit more work to calculate the behavior of the $\mathrm{C}-\mathrm{Y}$ gate. It commutes with $Z \otimes I$, but not with $X \otimes I$:

$$
\begin{align*}
(\mathrm{C}-\mathrm{Y})(X \otimes I)(\mathrm{C}-\mathrm{Y})|a, b\rangle & =i^{a}(-1)^{a b}(\mathrm{C}-\mathrm{Y})(X \otimes I)|a, b \oplus a\rangle \tag{9}\\
& =i^{a}(-1)^{a b}(\mathrm{C}-\mathrm{Y})|a \oplus 1, b \oplus a\rangle \tag{10}\\
& =i^{a+(a \oplus 1)}(-1)^{a b+(a \oplus 1)(a \oplus b)}|a \oplus 1, b \oplus 1\rangle \tag{11}\\
& =i(-1)^{b}|a \oplus 1, b \oplus 1\rangle \tag{12}
\end{align*}
$$

The last equality follows because one of a and $(a \oplus 1)$ is always 0 and the other is 1 . This operation is identifiable as $X \otimes Y$. For $I \otimes X$:

$$
\begin{align*}
(\mathrm{C}-\mathrm{Y})(I \otimes X)(\mathrm{C}-\mathrm{Y})|a, b\rangle & =i^{a}(-1)^{a b}(\mathrm{C}-\mathrm{Y})(I \otimes X)|a, b \oplus a\rangle \tag{13}\\
& =i^{a}(-1)^{a b}(\mathrm{C}-\mathrm{Y})|a, b \oplus a \oplus 1\rangle \tag{14}\\
& =i^{2 a}(-1)^{a b+a(b \oplus a \oplus 1)}|a, b \oplus 1\rangle \tag{15}\\
& =(-1)^{a}|a, b \oplus 1\rangle . \tag{16}
\end{align*}
$$

We can thus identify this operation as $Z \otimes X$. Finally, for $I \otimes Z$:

$$
\begin{align*}
(\mathrm{C}-\mathrm{Y})(I \otimes Z)(\mathrm{C}-\mathrm{Y})|a, b\rangle & =i^{a}(-1)^{a b}(\mathrm{C}-\mathrm{Y})(I \otimes Z)|a, b \oplus a\rangle \tag{17}\\
& =i^{a}(-1)^{a b+(a \oplus b)}(\mathrm{C}-\mathrm{Y})|a, b \oplus a\rangle \tag{18}\\
& =i^{2 a}(-1)^{a b+(a \oplus b)+a(a \oplus b)}|a, b\rangle \tag{19}\\
& =(-1)^{a+b}|a, b\rangle . \tag{20}
\end{align*}
$$

This is $Z \otimes Z$. Thus, under C-Y:

$$
\begin{array}{rll}
X \otimes I & \rightarrow X \otimes Y \\
Z \otimes I & \rightarrow & Z \otimes I \\
I \otimes X & \rightarrow & Z \otimes X \\
I \otimes Z & \rightarrow & Z \otimes Z . \tag{24}
\end{array}
$$

Thus, C-Y is also in the Clifford group.
b) We start with the standard values for the $\bar{X} \mathrm{~s}$ and \bar{Z}_{s} :

\bar{X}_{1}	$X \otimes I \otimes I$
\bar{X}_{2}	$I \otimes X \otimes I$
\bar{X}_{3}	$I \otimes I \otimes X$
\bar{Z}_{1}	$Z \otimes I \otimes I$
\bar{Z}_{2}	$I \otimes Z \otimes I$
\bar{Z}_{3}	$I \otimes I \otimes Z$.

After the first CNOT gate, we have:

$$
\begin{array}{ll}
\bar{X}_{1} & X \otimes I \otimes I \\
\bar{X}_{2} & X \otimes X \otimes I \\
\overline{\bar{X}}_{3} & I \otimes I \otimes X \\
\bar{Z}_{1} & Z \otimes Z \otimes I \tag{26}\\
\bar{Z}_{2} & I \otimes Z \otimes I \\
\bar{Z}_{3} & I \otimes I \otimes Z .
\end{array}
$$

After the Hadamard gate, we have:

\bar{X}_{1}	$X \otimes I \otimes I$
\bar{X}_{2}	$X \otimes Z \otimes I$
\bar{X}_{3}	$I \otimes I \otimes X$
\bar{Z}_{1}	$Z \otimes X \otimes I$
\bar{Z}_{2}	$I \otimes X \otimes I$
\bar{Z}_{3}	$I \otimes I \otimes Z$.

After the first C-Z gate, we have:

$$
\begin{array}{ll}
\bar{X}_{1} & X \otimes I \otimes I \\
\bar{X}_{2} & X \otimes Z \otimes I \\
\overline{\bar{X}}_{3} & I \otimes Z \otimes X \\
\bar{Z}_{1} & Z \otimes X \otimes Z \tag{28}\\
\bar{Z}_{2} & I \otimes X \otimes Z \\
\bar{Z}_{3} & I \otimes I \otimes Z .
\end{array}
$$

After the second C-Z gate, we have:

$$
\begin{array}{ll}
\bar{X}_{1} & X \otimes Z \otimes I \\
\bar{X}_{2} & X \otimes I \otimes I \\
\overline{\bar{X}}_{3} & I \otimes Z \otimes X \\
\bar{Z}_{1} & I \otimes X \otimes Z \tag{29}\\
\bar{Z}_{2} & Z \otimes X \otimes Z \\
\bar{Z}_{3} & I \otimes I \otimes Z .
\end{array}
$$

And then, after the final CNOT, we have:

\bar{X}_{1}	$X \otimes Z \otimes X$
\bar{X}_{2}	$X \otimes I \otimes X$
\bar{X}_{3}	$I \otimes Z \otimes X$
\bar{Z}_{1}	$Z \otimes X \otimes Z$
\bar{Z}_{2}	$I \otimes X \otimes Z$
\bar{Z}_{3}	$Z \otimes I \otimes Z$.

c) We notice that the initial state $|000\rangle$ maps to a +1 -eigenstate of the three final \bar{Z} operators, namely $(|000\rangle+|010\rangle) / \sqrt{2}$. Thus, the first column of the matrix has entries $1 / \sqrt{2}$ in the 000 and 010 rows and is 0 elsewhere. Applying the \bar{X} operators, we get the other columns:

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \tag{31}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0
\end{array}\right) .
$$

d) The evolution of \bar{X} is the same as the \bar{X}_{1} above, and the evolution of \bar{Z} is the same as \bar{Z}_{1} above. The stabilizer generator $I \otimes X \otimes X$ becomes $X \otimes Z \otimes I$, and the generator $I \otimes Z \otimes Z$ becomes $Z \otimes X \otimes I$. Thus, we find:

$$
\begin{array}{cc}
\bar{X} \quad \rightarrow \quad X \otimes Z \otimes X=I \otimes I \otimes X \\
\bar{Z} & \rightarrow Z \otimes X \otimes Z=I \otimes I \otimes Z \tag{33}
\end{array}
$$

That is, the logical qubit ends up in the third register after this circuit.

Problem 2. Generating the Clifford Group

a) This follows immediately from a lemma I proved in class: If we let u_{i} be the $2 n$-bit binary vector corresponding to \bar{X}_{i} and v_{i} be the $2 n$-bit binary vector corresponding to \bar{Z}_{i}, then there exists a $2 n$-bit binary vector w with symplectic inner product s_{i} with u_{i} and symplectic inner product t_{i} with v_{i}. Then the Pauli operator E corresponding to w changes the phases of $\bar{X}_{i} \mapsto(-1)^{s_{i}} \bar{X}_{i}$ and $\bar{Z}_{i} \mapsto(-1)^{t_{i}} \bar{Z}_{i}$. Then if U changes $X_{i} \mapsto \bar{X}_{i}, Z_{i} \mapsto \bar{Z}_{i}$, then $E U$ is the desired Clifford group operation.
b) We start with $H(X \mapsto Z, Y \mapsto-Y$, and $Z \mapsto X)$ and $P(X \mapsto Y, Y \mapsto-X$, and $Z \mapsto Z)$. These perform the permutations (13) and (12) on the ordered set (X, Y, Z). These two permutations generate all of S_{3}, so the other 4 are definitely possible. I give explicit constructions below:

- (): No change; this is the identity operation.
- (23): $H P H$, maps $X \mapsto X, Z \mapsto-Y$ (so $Y \mapsto Z$). Call this gate Q.
- (123): $H P$, maps $X \mapsto-Y, Z \mapsto X$ (so $Y \mapsto Z$). Call this gate T.
- (132): $P H$, maps $X \mapsto Z, Z \mapsto Y$ (so $Y \mapsto X$). This gate is equal to $X T^{2}$.

Also note that $P^{2}=Z, H P^{2} H=X$, and $H P^{2} H P^{2}=-i Y$.
c) The SWAP gate is constructed via the following circuit:

We follow the evolution of \bar{X}_{i} and \bar{Z}_{i} as follows:

\bar{X}_{1}	$X \otimes I$		$X \otimes X$		$I \otimes X$
	$I \otimes X$				
\bar{X}_{2}	$I \otimes X$		$I \otimes X$		$X \otimes X$
\bar{Z}_{1}	$Z \otimes I$	\rightarrow	$Z \otimes I$	\rightarrow	$X \otimes Z$
\bar{Z}_{2}	$I \otimes Z$		$Z \otimes Z$		$Z \otimes I$
			$I \otimes Z$		
	$I \otimes I$				

The overall operation can thus be seen to be the SWAP gate.
The C-Z gate can be written as just $(I \otimes H) \operatorname{CNOT}(I \otimes H)$. The C-Y gate can be written as $(I \otimes$ $P) \operatorname{CNOT}\left(I \otimes P^{3}\right)\left(\right.$ with $\left.P^{3}=P^{\dagger}\right)$. Alternatively, we could expand C-Y $=P(\mathrm{C}-\mathrm{Z}) \mathrm{CNOT}$, and then expand C-Z as above. (We have a P in this expansion because $Y=i X Z$, not $X Z$.)
d) I picked redundant notation for this problem; let us use R_{0} and R_{1} instead of the Pauli operations P and Q. (They still get mapped to $X \otimes P^{\prime}$ and $Z \otimes Q^{\prime}$.)
First, note that since $\left\{R_{0}, R_{1}\right\}=0$, there exists at least one qubit on which R_{0} and R_{1} differ, and on which neither is the identity. Then by performing a series of SWAPs, we can make this register the first qubit. Suppose R_{0} on this register is A and R_{1} on this register is B. Then by performing a one-qubit Clifford operation, as per part b, we know that we can map $A \mapsto X$ and $B \mapsto Z$, as $A \neq B$ and we can perform all possible permutations of X, Y, and Z. The net effect is to map $R_{0} \mapsto X \otimes P^{\prime}$ (for some Pauli P^{\prime}) and $R_{1} \mapsto Z \otimes Q^{\prime}$ (for some Pauli Q^{\prime}).
e) We wish to map $X_{1} \mapsto X \otimes P^{\prime}$ and $Z_{1} \mapsto Z \otimes Q^{\prime}$ for the specific P^{\prime} and Q^{\prime} we are given. Now, one feature CNOT, C-Y, and C-Z all have in common is that they leave $Z \otimes I$ invariant. Thus, if we perform CNOT from qubit 1 to qubit $i(i>1)$ whenever the i th qubit of $X \otimes P^{\prime}$ is X, perform C-Y whenever the i th qubit of $X \otimes P^{\prime}$ is Y, and perform C-Z whenever the i th qubit of $X \otimes P^{\prime}$ is Z, then we map $X_{1} \mapsto X \otimes P^{\prime}$ and $Z_{1} \mapsto Z \otimes I$. Then let us perform H on the first qubit so that $X_{1} \mapsto Z \otimes P^{\prime}$ and $Z_{1} \mapsto X \otimes I$, and do the same procedure for Q^{\prime}.

This maps $Z_{1} \mapsto X \otimes Q^{\prime}$, but what happens to the image of X_{1} ? All of these gates leave $Z \otimes I$ alone, but many of them act on the second qubit. However, we note the following fact: CNOT, C-Y, and C-Z leave $I \otimes X, I \otimes Y$, and $I \otimes Z$ alone. That is, the controlled- E operation leaves $I \otimes E$ invariant when E is a Pauli matrix. Furthermore, the controlled- E operation maps $I \otimes F$ to $Z \otimes F$ whenever E and F are distinct nonidentity Pauli operators. Finally, X_{1} and Z_{1} anticommute, but so do X and Z, so P^{\prime} and Q^{\prime} anticommute. Therefore P^{\prime} and Q^{\prime} contain different nonidentity Pauli matrices on an even number of places, so the controlled gates for Q^{\prime} produce an even number of $Z \mathrm{~s}$ in the first qubit of the image of X_{1}. They therefore cancel out, and $X_{1} \mapsto Z \otimes P^{\prime}$.

Then we again perform H on the first qubit, and we have the desired transformation. Since C-Y and C-Z are both products of H, P, and CNOT by part c, we have the desired decomposition.
f) \bar{X}_{i} commutes with both \bar{X}_{1} and \bar{Z}_{1}, so $U_{1}^{\dagger}\left(\bar{X}_{i}\right)$ commutes with both $U_{1}^{\dagger}\left(\bar{X}_{1}\right)=X_{1}$ and $U_{1}^{\dagger}\left(\bar{Z}_{1}\right)=Z_{1}$. Any operator that commutes with both X_{1} and Z_{1} must be of the form $I \otimes R_{i}$. Similarly, \bar{Z}_{i} commutes with both \bar{X}_{1} and \bar{Z}_{1}, so $U_{1}^{\dagger}\left(\bar{Z}_{i}\right)$ must be of the form $I \otimes S_{i}$.
g) When $i \neq j,\left[\bar{X}_{i}, \bar{X}_{j}\right]=0$, so the images under U_{1}^{\dagger} also commute, meaning $\left[R_{i}, R_{j}\right]=0$. Similarly, $\left[\bar{Z}_{i}, \bar{Z}_{j}\right]=0$, so $\left[S_{i}, S_{j}\right]=0$, and $\left[\bar{X}_{i}, \bar{Z}_{j}\right]=0$, so $\left[R_{i}, S_{j}\right]=0$. In addition, $\left\{\bar{X}_{i}, \bar{Z}_{i}\right\}=0$, so the images under U_{1}^{\dagger} must anticommute, meaning $\left\{R_{i}, S_{i}\right\}=0$.

Suppose then that V_{2} acts on $n-1$ qubits maps $X_{i} \mapsto R_{i+1}$ and $Z_{i} \mapsto S_{i+1}$. (So $I \otimes V_{2}$ maps $X_{i} \mapsto I \otimes R_{i}$ and $Z_{i} \mapsto I \otimes S_{i}$.) Then $U_{1}\left(I \otimes V_{2}\right)$ performs the transformation

$$
\begin{array}{rcll}
X_{1} \rightarrow & X_{1} & \rightarrow X \otimes P^{\prime}=\bar{X}_{1} \\
Z_{1} \rightarrow & Z_{1} & \rightarrow Z \otimes Q^{\prime}=\bar{Z}_{1} \\
X_{i} \rightarrow & I \otimes R_{i} & \rightarrow \bar{X}_{i} \quad(i>1) \\
Z_{i} \rightarrow & I \otimes S_{i} & \rightarrow \bar{Z}_{i} \quad(i>1) \tag{38}
\end{array}
$$

as desired.
h) Suppose we are given an arbitrary transformation $X_{i} \mapsto \bar{X}_{i}$ and $Z_{i} \mapsto \bar{Z}_{i}$ on n qubits, and suppose we already know how to break down any $(n-1)$-qubit Clifford group operation into H, P, and CNOT. Then by part d, there exists some series W_{1} of H, P, and CNOT that maps $\bar{X}_{1} \mapsto X \otimes P^{\prime}$ and $\bar{Z}_{1} \mapsto Z \otimes Q^{\prime}$. Suppose W_{1} maps $\bar{X}_{i} \mapsto \bar{X}_{i}^{\prime}$ and $\bar{Z}_{i} \mapsto \bar{Z}_{i}^{\prime}$. We know by part g that there exists a Clifford group operation $U_{1}\left(I \otimes V_{2}\right)$ which maps $X_{i} \mapsto \bar{X}_{i}^{\prime}$ and $Z_{i} \mapsto \bar{Z}_{i}^{\prime}$. Thus, $W_{1}^{\dagger} U_{1}\left(I \otimes V_{2}\right)$ maps $X_{i} \mapsto \bar{X}_{i}$ and $Z_{i} \mapsto \bar{Z}_{i}$. We know how to write U_{1} and W_{1}^{\dagger} as products of H, P, and CNOT, and by induction, V_{2}, which acts on $n-1$ qubits, is a Clifford group operation and can be written as a produt of H, P, and CNOT also. Since we proved the base case of $n=1$ in part b , this completes the induction.
Counting gates, we find that W_{1} involves only a constant number of gates, and U_{1} involves $O(n)$ gates. Since we need n recursion steps (getting $\left.U_{2}, U_{3}, \ldots, U_{n}\right)$, we have a total of $O\left(n^{2}\right)$ gates.
i) We wish to find a Clifford group operation mapping

$$
\begin{align*}
Z_{1} & \rightarrow X \otimes Z \otimes Z \otimes X \otimes I \tag{39}\\
X_{1} & \rightarrow Z \otimes I \otimes Z \otimes I \otimes I \tag{40}\\
Z_{2} & \rightarrow I \otimes X \otimes Z \otimes Z \otimes X \tag{41}\\
X_{2} & \rightarrow X \otimes Z \otimes X \otimes Y \otimes X \tag{42}\\
Z_{3} & \rightarrow X \otimes I \otimes X \otimes Z \otimes Z \tag{43}\\
X_{3} & \rightarrow Z \otimes Y \otimes Z \otimes I \otimes Y \tag{44}\\
Z_{4} & \rightarrow Z \otimes X \otimes I \otimes X \otimes Z \tag{45}\\
X_{4} & \rightarrow Z \otimes Z \otimes Z \otimes Y \otimes X \tag{46}\\
Z_{5} & \rightarrow Z \otimes Z \otimes Z \otimes Z \otimes Z \tag{47}\\
X_{5} & \rightarrow X \otimes X \otimes X \otimes X \otimes X \tag{48}
\end{align*}
$$

We don't particularly care what happens to X_{1}, X_{2}, X_{3}, or X_{4}, but we had to choose something, and they must have the right commutation relationships with the other operators. I chose values which disagreed with the corresponding Z_{i} s on the i th position to minimize the number of SWAPs necessary in the circuit.
We can choose $W_{1}=H_{1}$, so that $\bar{X}_{1} \mapsto X \otimes I \otimes Z \otimes I \otimes I$ and $\bar{Z}_{1} \mapsto Z \otimes Z \otimes Z \otimes X \otimes I$. Then we should choose $U_{1}=H_{1} \mathrm{C}-\mathrm{Z}(1,2) \mathrm{C}-\mathrm{Z}(1,3) \mathrm{CNOT}(1,4) H_{1} \mathrm{C}-\mathrm{Z}(1,3)$. We are left to perform $I \otimes V_{2}$ which maps

$$
\begin{align*}
Z_{2} & \rightarrow I \otimes X \otimes Z \otimes Z \otimes X \tag{49}\\
X_{2} & \rightarrow-I \otimes I \otimes Y \otimes Z \otimes X \tag{50}\\
Z_{3} & \rightarrow I \otimes Z \otimes Y \otimes Y \otimes Z \tag{51}\\
X_{3} & \rightarrow I \otimes Y \otimes Z \otimes I \otimes Y \tag{52}\\
Z_{4} & \rightarrow I \otimes X \otimes I \otimes X \otimes Z \tag{53}\\
X_{4} & \rightarrow I \otimes Z \otimes Z \otimes Y \otimes X \tag{54}\\
Z_{5} & \rightarrow I \otimes Z \otimes Z \otimes Z \otimes Z \tag{55}\\
X_{5} & \rightarrow \tag{56}\\
& -I \otimes Y \otimes Y \otimes I \otimes X .
\end{align*}
$$

Now, despite our efforts in choosing the $\bar{X}_{i} \mathrm{~s}$, we still have to perform a SWAP operation to get \bar{X}_{2} and \bar{Z}_{2} to disagree on the second position: We must choose $W_{2}=P_{2} \operatorname{SWAP}(2,3)$. Then $\bar{X}_{2} \mapsto$ $X \otimes I \otimes Z \otimes X$ and $\bar{Z}_{2} \mapsto Z \otimes X \otimes Z \otimes X$ (omitting the first qubit). We should therefore choose $U_{2}=H_{2} \operatorname{CNOT}(2,3) \mathrm{C}-\mathrm{Z}(2,4) \mathrm{CNOT}(2,5) H_{2} \mathrm{C}-\mathrm{Z}(2,4) \mathrm{CNOT}(2,5)$. Then, to find $I \otimes I \otimes V_{3}$, we act on the images of V_{2} by $U_{2}^{\dagger} W_{2}$ to get

$$
\begin{align*}
Z_{3} & \rightarrow-I \otimes I \otimes Z \otimes Y \otimes Z \tag{57}\\
X_{3} & \rightarrow-I \otimes I \otimes Z \otimes Z \otimes Z \tag{58}\\
Z_{4} & \rightarrow I \otimes I \otimes X \otimes X \otimes Z \tag{59}\\
X_{4} & \rightarrow-I \otimes I \otimes Y \otimes X \otimes I \tag{60}\\
Z_{5} & \rightarrow-I \otimes I \otimes Y \otimes I \otimes Y \tag{61}\\
X_{5} & \rightarrow I \otimes I \otimes Y \otimes I \otimes X \tag{62}
\end{align*}
$$

For W_{3}, we should choose $W_{3}=T_{3} X_{3} \operatorname{SWAP}(3,4)$. (The X makes the signs positive for \bar{X}_{3} and \bar{Z}_{3}.) Then $\bar{X}_{3} \mapsto I \otimes I \otimes X \otimes Z \otimes Z$ and $\bar{Z}_{3} \mapsto I \otimes I \otimes Z \otimes Z \otimes Z$. We then choose $U_{3}=$ $H_{3} \mathrm{C}-\mathrm{Z}(3,4) \mathrm{C}-\mathrm{Z}(3,5) H_{3} \mathrm{C}-\mathrm{Z}(3,4) \mathrm{C}-\mathrm{Z}(3,5)$. We act by $U_{3}^{\dagger} W_{3}$ to find for the action of $I \otimes I \otimes I \otimes V_{4}$:

$$
\begin{array}{rl}
Z_{4} & \rightarrow \\
X_{4} & \rightarrow-I \otimes I \otimes I \otimes Y \otimes I \\
Z_{5} & \rightarrow \\
X_{5} & \rightarrow I \otimes Y \tag{66}\\
X_{5} & I \otimes I \otimes X
\end{array}
$$

We now pick $W_{4}=Q_{4} Z_{4}$, meaning $\bar{X}_{4} \mapsto I \otimes I \otimes I \otimes X \otimes Z$ and $\bar{Z} \mapsto I \otimes I \otimes I \otimes Z \otimes I$. Then $U_{4}=\mathrm{C}-\mathrm{Z}(4,5)$, and the action of $I \otimes I \otimes I \otimes I \otimes V_{5}$ is:

$$
\begin{array}{ll}
Z_{5} & \rightarrow I \otimes I \otimes I \otimes I \otimes Y \\
X_{5} & \rightarrow \tag{68}\\
-I \otimes I \otimes I \otimes I \otimes X
\end{array}
$$

We then recognize V_{5} as $Q_{5} Y_{5}=H_{5} P_{5} H_{5} Y_{5}$.
Now we can put everything together: The overall encoding operation will be $W_{1}^{\dagger} U_{1} W_{2}^{\dagger} U_{2} W_{3}^{\dagger} U_{3} W_{4}^{\dagger} U_{4} V_{5}$, which has the following circuit:

We could, of course, replace $\mathrm{C}-\mathrm{Z}, Q$, and T in this circuit with their constructions from H, P, and CNOT to get a circuit involving only those gates.
a) When the QECC has a basis $|\bar{i}\rangle$ of encoded states, we can write

$$
\begin{align*}
A_{d} & \left.=\frac{1}{2^{2 k}} \sum_{E_{d}}\left|\sum_{i}\langle\bar{i}| E_{d}\right| \bar{i}\right\rangle\left.\right|^{2} \tag{69}\\
B_{d} & \left.=\frac{1}{2^{k}} \sum_{E_{d}} \sum_{i, j}\left|\langle\bar{i}| E_{d}\right| \bar{j}\right\rangle\left.\right|^{2} \tag{70}
\end{align*}
$$

Clearly both of these are nonnegative numbers. When $d=0$, the only term in the sum is $E_{d}=I$, and $\langle\bar{i}| E_{d}|\bar{j}\rangle=\delta_{i j}$. Thus, $A_{0}=B_{0}=1$.
The Cauchy-Schwarz inequality says that

$$
\begin{equation*}
|\vec{x} \cdot \vec{y}|^{2} \leq|\vec{x}|^{2}|\vec{y}|^{2} \tag{71}
\end{equation*}
$$

Let $\alpha_{i j}=\langle\bar{i}| E_{c}|\bar{j}\rangle$. Let \vec{x} be a $2^{2 k}$-dimensional complex vector with entries $\alpha_{i j}$, and let \vec{y} be a $2^{2 k_{-}}$ dimensional vector with entries equal to $\left(1 / 2^{k}\right) \delta_{i j}$ (that is, 0 when $i \neq j$ and $1 / 2^{k}$ otherwise). Then we have

$$
\begin{equation*}
\left|\sum_{i i} \alpha_{i i} / 2^{k}\right|^{2} \leq \sum_{i j}\left|\alpha_{i j}\right|^{2} / 2^{k} \tag{72}
\end{equation*}
$$

which implies that $A_{d} \leq B_{d}$.
b) If the code has distance d, then the QECC conditions say that for $\mathrm{wt}(E)<d$,

$$
\begin{equation*}
\langle\bar{i}| E|\bar{j}\rangle=C(E) \delta_{i j} \tag{73}
\end{equation*}
$$

Thus, for $c<d$,

$$
\begin{align*}
A_{c} & =\frac{1}{2^{2 k}} \sum_{E_{c}} 2^{2 k}\left|C\left(E_{c}\right)\right|^{2} \tag{74}\\
B_{c} & =\frac{1}{2^{k}} \sum_{E_{c}} 2^{k}\left|C\left(E_{c}\right)\right|^{2} \tag{75}
\end{align*}
$$

and $A_{c}=B_{c}$.
c) The quantum MacWilliams identity tells us

$$
\begin{align*}
B(z) & =B_{0}+B_{1} z+B_{2} z^{2}+B_{3} z^{3} \tag{76}\\
& =\frac{1}{4}(1+3 z)^{3} A\left(\frac{1-z}{1+3 z}\right) \tag{77}\\
& =\frac{1}{4}\left[A_{0}(1+3 z)^{3}+A_{1}(1-z)(1+3 z)^{2}+A_{2}(1-z)^{2}(1+3 z)+A_{3}(1-z)^{3}\right] \tag{78}
\end{align*}
$$

We calculate the coefficients of powers of z and compare, getting the following constraints:

$$
\begin{align*}
4 B_{0} & =A_{0}+A_{1}+A_{2}+A_{3} \tag{79}\\
4 B_{1} & =9 A_{0}+5 A_{1}+A_{2}-3 A_{3} \tag{80}\\
4 B_{2} & =27 A_{0}+3 A_{1}-5 A_{2}+3 A_{3} \tag{81}\\
4 B_{3} & =27 A_{0}-9 A_{1}+3 A_{2}-A_{3} \tag{82}
\end{align*}
$$

With the additional constraints $B_{0}=A_{0}=1, B_{1}=A_{1}, B_{2} \geq A_{2}$, and $B_{3} \geq A_{3}$, we are reduced to two linear equalities and two linear inequalities for three variables:

$$
\begin{align*}
A_{1}+A_{2}+A_{3} & =3 \tag{83}\\
A_{1}+A_{2}-3 A_{3} & =-9 \tag{84}\\
3 A_{1}-9 A_{2}+3 A_{3} & \geq-27 \tag{85}\\
-9 A_{1}+3 A_{2}-5 A_{3} & \geq-27 . \tag{86}
\end{align*}
$$

The first two equations tell us that $A_{3}=3$ and $A_{2}=-A_{1}$. The only possible solution with both A_{1} and A_{2} nonnegative is therefore $\left(A_{0}, A_{1}, A_{2}, A_{3}\right)=(1,0,0,3)$. Indeed, this solution satisfies the two inequalities.

Problem 4. The Quantum Shadow Enumerator

a) The definition of $S h_{d}$ is

$$
\begin{equation*}
S h_{d}=\frac{1}{2^{k}} \sum_{E_{d}} \operatorname{Tr}\left(E_{d} \Pi E_{d}^{\dagger} Y^{\otimes n} \Pi^{*} Y^{\otimes n}\right) \tag{87}
\end{equation*}
$$

For a general QECC,

$$
\begin{align*}
S h_{d} & =\frac{1}{2^{k}} \sum_{E_{d}} \sum_{i, j}\langle\bar{i}| E_{d}^{\dagger} Y^{\otimes n}\left|\bar{j}^{*}\right\rangle\left\langle\bar{j}^{*}\right| Y^{\otimes n} E_{d}|\bar{i}\rangle \tag{88}\\
& \left.=\frac{1}{2^{k}} \sum_{E_{d}} \sum_{i, j}\left|\left\langle\bar{j}^{*}\right| Y^{\otimes n} E_{d}\right| \bar{i}\right\rangle\left.\right|^{2}, \tag{89}
\end{align*}
$$

where $\left|\bar{j}^{*}\right\rangle$ is the state vector of $|\bar{j}\rangle$ with the coefficients in the standard basis complex-conjugated. This is still a perfectly valid state vector, so the absolute value squared of $\left\langle\bar{j}^{*}\right| Y^{\otimes n} E_{d}|\bar{i}\rangle$ remains a nonnegative number, and $S h_{d} \geq 0$.
For a stabilizer code, we write $\Pi=\sum_{M \in S} M / 2^{n-k}$, so $\Pi^{*}=\sum_{M \in S}(-1)^{y_{M}} M / 2^{n-k}$, where y_{M} is the number of Y operators in the tensor product description of M. Then

$$
\begin{equation*}
Y^{\otimes n} \Pi^{*} Y^{\otimes n}=\frac{1}{2^{n-k}} \sum_{M \in S}(-1)^{x_{M}+y_{M}+z_{M}} M=\frac{1}{2^{n-k}} \sum_{M \in S}(-1)^{\mathrm{wt}(M)} M \tag{90}
\end{equation*}
$$

where x_{M} is the number of $X \mathrm{~s}$ in M and z_{M} is the number of $Z \mathrm{~s}$ in M. Also,

$$
\begin{equation*}
E_{d} \Pi E_{d}^{\dagger}=\frac{1}{2^{n-k}} \sum_{M \in S}(-1)^{c\left(M, E_{d}\right)} M \tag{91}
\end{equation*}
$$

where $c\left(M, E_{d}\right)$ is the symplectic inner product between M and E_{d} - that is, 0 when they commute and 1 when they anticommute. Therefore,

$$
\begin{equation*}
\operatorname{Tr}\left(E_{d} \Pi E_{d}^{\dagger} Y^{\otimes n} \Pi^{*} Y^{\otimes n}\right)=\frac{2^{n}}{2^{2 n-2 k}} \sum_{M \in S}(-1)^{c\left(M, E_{d}\right)+\mathrm{wt}(M)} \tag{92}
\end{equation*}
$$

Suppose $E_{d} \in S h(S)$. Then $c\left(M, E_{d}\right)+\mathrm{wt}(M)=0 \bmod 2$ for all $M \in S$, and the trace gives 2^{k}.
Suppose on the other hand, $E_{d} \notin S h(S)$. Then $\exists M \in S$ with $c\left(M, E_{d}\right)+\mathrm{wt}(M)=1 \bmod 2$. Let N be another element of S. We know M and N commute. Let us suppose M and N both act nontrivially on some set of l qubits, and that $\mathrm{wt}(M)=m+l, \operatorname{wt}(N)=n+l$. Then $\mathrm{wt}(M N)=m+n+l^{\prime}$, where l^{\prime} is the number of qubits on which M and N act nontrivially but differently (e.g., M is X and N is $Z)$. However, we know that l^{\prime} must be even, since M and N commute, so

$$
\begin{equation*}
\mathrm{wt}(M N) \bmod 2=m+n=\mathrm{wt}(M)+\mathrm{wt}(N)-2 l=\mathrm{wt}(M)+\mathrm{wt}(N) \bmod 2 \tag{93}
\end{equation*}
$$

Also, $c\left(M N, E_{d}\right)=c\left(M, E_{d}\right)+c\left(N, E_{d}\right)$, so the value of $c\left(M N, E_{d}\right)+\mathrm{wt}(M N)$ is opposite the value of $c\left(N, E_{d}\right)+\mathrm{wt}(N)$. Therefore, in this case, exactly half of the elements of S satisfy $c\left(M, E_{d}\right)+\mathrm{wt}(M)=$ $1 \bmod 2$ and half satisfy $c\left(M, E_{d}\right)+\mathrm{wt}(M)=0 \bmod 2$, so $\operatorname{Tr}\left(E_{d} \Pi E_{d}^{\dagger} Y^{\otimes n} \Pi^{*} Y^{\otimes n}\right)=0$.
That is, the trace is 0 when $E_{d} \notin S h(S)$ and it is 2^{k} when $E_{d} \in S h(S)$. Thus, $S h_{d}$ is equal to the number of elements of $S h(S)$ of weight d.
b) Suppose S is real, so all operators in S contain an even number of Y s. Then elements of $S_{\text {even }}$ contain an even combined number of $X \mathrm{~s}$ and $Z \mathrm{~s}$, and elements of $S_{\text {odd }}$ contain an odd combined number of $X \mathrm{~s}$ and $Z \mathrm{~s}$. But $Y^{\otimes n}$ will commute with an operator M iff the combined number of $X \mathrm{~s}$ and $Z \mathrm{~s}$ is even. Therefore, $Y^{\otimes n}$ commutes with all elements of $S_{\text {even }}$ and anticommutes with all elements of $S_{\text {odd }}$, meaning $Y^{\otimes n} \in S h(S)$.
Now suppose $Y^{\otimes n} \in S h(S)$. This means that elements of $S_{\text {even }}$ contain an even combined number of $X \mathrm{~s}$ and $Z \mathrm{~s}$, and elements of $S_{\text {odd }}$ contain an odd combined number of $X \mathrm{~s}$ and $Z \mathrm{~s}$. But that means that elements of both $S_{\text {even }}$ and $S_{\text {odd }}$ contain an even number of Y s, so the code is real.
c) Using the hint,

$$
\begin{equation*}
S h_{n}=\lim _{z \rightarrow \infty} S h(z) / z^{n}=\frac{3^{n}}{2^{n-k}} A(1 / 3) \tag{94}
\end{equation*}
$$

But $A(1 / 3)=\sum_{d} A_{d}(1 / 3)^{d}$, and $A_{0}=1, A_{d} \geq 0$, so $A(1 / 3)>0$. Therefore, $S h_{n}>0$. By part a, we know that for a stabilizer code, $S h_{n}$ is an integer, and is equal to the number of elements of weight n in $S h(S)$, so in particular, $S h(S)$ contains at least one element of maximum weight.
d) The main observation is that when U is a single-qubit operation, then for all $M \in \mathcal{P}, U(M)$ has the same weight as M. Thus, $U\left(S_{\text {even }}\right)=[U(S)]_{\text {even }}$ and $U\left(S_{\text {odd }}\right)=[U(S)]_{\text {odd }}$. Then $\operatorname{Sh}(U(S))$ contains those F s that commute with elements of $U\left(S_{\text {even }}\right)$ and anticommute with elements of $U\left(S_{\text {odd }}\right)$. But if $F=U(E)$, then this is equivalent to saying that E commutes with elements of $S_{\text {even }}$ and anticommutes with elements of $S_{\text {odd }}$. That is, $F \in S h(U(S))$ iff $F=U(E)$, with $E \in S h(S)$. Therefore, $S h(U(S))=U(S h(S))$.
If U is a CNOT or other multiple-qubit operation, it can change the weight of operators, and therefore the relation need not hold. So, for instance, the $[[2,0]]$ stabilizer code with generators $Z \otimes I$ and $I \otimes Z$ has shadow $\{X \otimes X, Y \otimes Y, X \otimes Y, Y \otimes X\}$. After a CNOT, we have the same stabilizer, but applying the CNOT to the old shadow gives us $\{X \otimes I,-X \otimes Z, Y \otimes X, X \otimes Y\}$, and the first two elements are not in the shadow any more.

By part c, $S h(S)$ always contains at least one element E of weight n. Via some tensor product U of one-qubit Clifford group operations we can transform E into $Y^{\otimes n}$ (cf. problem 2b). Thus, $U(S h(S))=S h(U(S))$ contains $Y^{\otimes n}$. By part b, this implies that $U(S)$ is a real code; this shows that S is equivalent to a real code. (Recall that equivalent codes are related by permutations of the qubits, which we do not use here, and single-qubit unitary operations.)
e) We find

$$
\begin{align*}
S h(z) & =S h_{0}+S h_{1} z+S h_{2} z^{2}+S h_{3} z^{3} \tag{95}\\
& =\frac{1}{4}\left[A_{0}(1+3 z)^{3}+A_{1}(z-1)(1+3 z)^{2}+A_{2}(z-1)^{2}(1+3 z)+A_{3}(z-1)^{3}\right] \tag{96}
\end{align*}
$$

As before, we match the coefficients of powers of z to get

$$
\begin{align*}
4 S h_{0} & =A_{0}-A_{1}+A_{2}-A_{3} \tag{97}\\
4 S h_{1} & =9 A_{0}-5 A_{1}+A_{2}+3 A_{3} \tag{98}\\
4 S h_{2} & =27 A_{0}-3 A_{1}-5 A_{2}-3 A_{3} \tag{99}\\
4 S h_{3} & =27 A_{0}+9 A_{1}+3 A_{2}+A_{3} . \tag{100}
\end{align*}
$$

Recalling that the only solution from 3 c was $\left(A_{0}, A_{1}, A_{2}, A_{3}\right)=(1,0,0,3)$, we see that the shadow enumerators would give us $\left(S h_{0}, S h_{1}, S h_{2}, S h_{3}\right)=(-2,18,18,30) / 4$, but since $S h_{0}<0$, they do not satisfy the appropriate constraints, and therefore no [[3,1,2]] QECC can exist.

