# Solution Set \#5 

Quantum Error Correction<br>Instructor: Daniel Gottesman

## Problem \#1. Qudit Stabilizer Codes

a) Inspired by the distance 2 qubit codes, we pick one stabilizer generator to be $X^{a_{i}}$ on each qudit, and one to be $Z^{b_{i}}$ on each qudit. We need $a_{i}, b_{i} \neq 0 \forall i$ so that the code has distance 2 , and we need $\sum a_{i} b_{i}=0(\bmod p)$ so that the two generators commute.
If we choose $a_{i}=b_{i}=1$ for $i=1, \ldots, n-1$ and $a_{n}=1, b_{n}=-(n-1)(\bmod p)$, we satisfy these conditions when $n \neq 1(\bmod p)$. For the remaining case, we can again let $a_{i}=1$ for all $i$, but let $b_{i}=1$ for $i \leq n-2, b_{n-1}=2, b_{n}=-1$. Since $p>2$, this code satisfies the conditions for $n=1(\bmod p)$.
b) Let us use the points $\alpha_{i}=\{1,2,3,4,5\}$. The code $C_{1}$ in the standard basis consists of all polynomials of degree 2 or less. We can therefore take its generator matrix to be given by the monomials 1 , $x$, and $x^{2}$ :

$$
G_{1}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1  \tag{1}\\
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 2 & 4
\end{array}\right)
$$

(Recall we are working modulo 7.) In order to find the dual matrix, it is helpful to put $G_{1}$ in what is known as "systematic form" by using row operations to put it in the form $(I \mid G)$. By subtracting row 1 from rows 2 and 3 , then subtracting row 2 from 1 once and 3 times from row 3 , then subtracting row 3 from row 13 times and from row 2 once, and finally dividing row 3 by 2 , we get

$$
G_{1}^{\prime}=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 3  \tag{2}\\
0 & 1 & 0 & 4 & 6 \\
0 & 0 & 1 & 3 & 6
\end{array}\right)
$$

as an alternate generator matrix for $C_{1}$. Then we can read off two generating rows of the dual by putting 1,0 and 0,1 in the last two places:

$$
H_{1}=\left(\begin{array}{lllll}
6 & 3 & 4 & 1 & 0  \tag{3}\\
4 & 1 & 1 & 0 & 1
\end{array}\right)
$$

This gives us the two $Z$ generators of the stabilizer. For the $X$ generators, we know that $C_{2}^{\perp}$ is a subcode of $C_{1}$, and using the particular definition of a polynomial code from class, $C_{2}^{\perp}$ is the subcode with constant term 0 (since encoded qudits correspond to other values of the constant term, which are cosets of $C_{2}^{\perp}$ ). Thus,

$$
H_{2}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5  \tag{4}\\
1 & 4 & 2 & 2 & 4
\end{array}\right)
$$

Therefore the stabilizer is

$$
\begin{array}{ccccc}
Z^{6} & Z^{3} & Z^{4} & Z & I \\
Z^{4} & Z & Z & I & Z  \tag{5}\\
X & X^{2} & X^{3} & X^{4} & X^{5} \\
X & X^{4} & X^{2} & X^{2} & X^{4}
\end{array}
$$

## Problem \#2. Transversal Operations

a) We can choose the following coset representatives for the four logical operations:

$$
\begin{align*}
& \bar{X}_{1}=X \otimes X \otimes I \otimes I  \tag{6}\\
& \bar{X}_{2}=X \otimes I \otimes X \otimes I  \tag{7}\\
& \bar{Z}_{1}=Z \otimes I \otimes Z \otimes I  \tag{8}\\
& \bar{Z}_{2}=Z \otimes Z \otimes I \otimes I \tag{9}
\end{align*}
$$

(Recall all logical Pauli operations must commute with the stabilizer, and the logical Pauli operations must have the correct commutation relations between pairs.)
b) $H^{\otimes 4}$ clearly preserves the stabilizer, as the two generators $X \otimes X \otimes X \otimes X$ and $Z \otimes Z \otimes Z \otimes Z$ are swapped. It also swaps logical Pauli operations $\bar{X}_{1} \leftrightarrow \bar{Z}_{2}$ and $\bar{X}_{2} \leftrightarrow \bar{Z}_{1}$. Thus it does logical Hadamard on both encoded qubits, plus it swaps the qubits.
$R^{\otimes 4}$ maps $Z \otimes Z \otimes Z \otimes Z$ to itself and $X \otimes X \otimes X \otimes X$ to $Y \otimes Y \otimes Y \otimes Y$ (the product of the two generators), so it is a valid encoded operation. It maps $\bar{Z}_{1}$ and $\bar{Z}_{2}$ to themselves and maps

$$
\begin{align*}
& \bar{X}_{1} \mapsto Y \otimes Y \otimes I \otimes I=-\bar{X}_{1} \bar{Z}_{2}  \tag{10}\\
& \bar{X}_{2} \mapsto Y \otimes I \otimes Y \otimes I=-\bar{X}_{2} \bar{Z}_{1} \tag{11}
\end{align*}
$$

Without the minus signs, we would recognize this as the controlled- $Z$ operation between the two logical qubits $\left(|i\rangle|j\rangle \mapsto(-1)^{i j}|i\rangle|j\rangle\right)$. With the minus signs, it becomes $Z_{1} Z_{2}$ followed by controlled- $Z$, or an overall operation

$$
\begin{equation*}
|i\rangle|j\rangle \mapsto(-1)^{i j+i+j}|i\rangle|j\rangle \tag{12}
\end{equation*}
$$

The CNOT between two blocks is a valid transversal operation, as this is a CSS code, and performs logical CNOTs between the corresponding encoded qubits of each code. (That is, logical CNOT from the first encoded qubit of block 1 to the first encoded qubit of block 2, and similarly for the second encoded qubit.)
c) From problem $1 a$ we have the stabilizer

$$
\begin{array}{ccccc}
Z^{6} & Z^{3} & Z^{4} & Z & I \\
Z^{4} & Z & Z & I & Z \\
X & X^{2} & X^{3} & X^{4} & X^{5}  \tag{13}\\
X & X^{4} & X^{2} & X^{2} & X^{4}
\end{array}
$$

The logical $X$ can be chosen from the discarded row of $G_{1}: \bar{X}=X \otimes X \otimes X \otimes X \otimes X$. The logical $Z$ we must deduce by choosing a third row for $H_{1}$ that is orthogonal to $H_{2}$. We put $H_{2}$ in systematic form:

$$
H_{2}^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 4 & 6 & 6  \tag{14}\\
0 & 1 & 3 & 6 & 3
\end{array}\right)
$$

and choose as $\bar{Z}=Z^{3} \otimes Z^{4} \otimes Z \otimes I \otimes I$.
The encoded SUM gate is automatic, as this is a CSS code: we simply perform a transversal SUM gate. (Actually, the logical scalar multiplication gates $S_{c}$ are too, but we do not need them as part of our generating set.)
To find the remaining two logical gates (Fourier transform $F$ and quadratic phase $R$ ), it will be convenient to change to an alternate pair of $X$ generators of the stabilizer that are of the same form as the two $Z$ generators - that is, with one $I$ on the fourth or fifth position. This is because transversal gates will never change an $I$ to something else, and we can use the fixed positions of the $I$ s to narrow
down our search. For instance, we can make the fifth qudit $I$ by taking the first $X$ generator squared times the second one: $X^{3} \otimes X \otimes X \otimes X^{3} \otimes I$. We can make the fourth qudit $I$ by taking the first $X$ generator times the second to the power $-2: X^{6} \otimes X \otimes X^{6} \otimes I \otimes X^{4}$. It is easy to see that the other $X$ elements of these two forms are simply powers of these two elements. Thus we have the stabilizer generated by

$$
\begin{array}{ccccc}
Z^{6} & Z^{3} & Z^{4} & Z & I \\
Z^{4} & Z & Z & I & Z \\
X^{3} & X & X & X^{3} & I  \tag{15}\\
X^{6} & X & X^{6} & I & X^{4}
\end{array}
$$

For the logical Fourier transform $F$, we must map $X$ s to $Z$ s in the logical operations. We can always find a Clifford group element that maps $X^{a} \mapsto Z^{b}$ for any two $a$ and $b$, and can further choose that $Z \mapsto X^{c}$, but we cannot choose $c$, as it is determined by the commutation relation: $X^{a} Z=\omega^{-a} Z X^{a}$ and $Z^{b} X^{c}=\omega^{b c} X^{c} Z^{b}$, which tells us $c=-a / b$. (We can implement this Clifford group operation by Fourier transform followed by scalar multiplication by $a / b$.)
We then perform $X^{3} \mapsto Z^{6}$ on the first qudit, $X \mapsto Z^{3}$ on the second qudit, $X \mapsto Z^{4}$ on the third qudit, and $X^{3} \mapsto Z$ on the fourth qudit, and some other operation $X^{4} \mapsto Z^{r}$ on the fifth qudit, with $r$ yet to be specified. This maps the first $X$ generator to the first $Z$ generator. When we do this, the second $X$ generator becomes $Z^{5} \otimes Z^{3} \otimes Z^{3} \otimes I \otimes Z^{r}$, which we can recognize as the second $Z$ generator cubed, with $r=3$.
At the same time, we are transforming the $Z \mathrm{~s}$ :

$$
\begin{align*}
& Z_{1} \mapsto X_{1}^{3}  \tag{16}\\
& Z_{2} \mapsto X_{2}^{2}  \tag{17}\\
& Z_{3} \mapsto X_{3}^{5}  \tag{18}\\
& Z_{4} X_{4}^{4}  \tag{19}\\
& Z_{5} \mapsto X_{5} . \tag{20}
\end{align*}
$$

The first $Z$ generator then becomes $X^{4} \otimes X^{6} \otimes X^{6} \otimes X^{4} \otimes I$, which we can recognize as the first $X$ generator to the sixth power. The second $Z$ generator becomes $X^{5} \otimes X^{2} \otimes X^{5} \otimes I \otimes X$, which is the second $X$ generator squared. Thus, this gate gives us a valid encoded operation.
We can discover what it is by looking at the logical $X$ and $Z: \bar{X} \mapsto \bar{X}^{\prime}=Z^{2} \otimes Z^{3} \otimes Z^{4} \otimes Z^{5} \otimes Z^{6}$. We wish to write $\bar{X}^{\prime}$ as some power of the original $\bar{Z}$ times an element of the stabilizer. Since a power of $\bar{Z}$ will still be $I$ on the fourth and fifth qudits, we know that the relevant element of the stabilizer is the fifth power of the first $Z$ generator times the sixth power of the second $Z$ generator: $Z^{5} \otimes I \otimes Z^{5} \otimes Z^{5} \otimes Z^{6}$. That is, $\bar{X}^{\prime}=Z^{4} \otimes Z^{3} \otimes Z^{6} \otimes I \otimes I=\bar{Z}^{-1}$.
Thus, the logical operation we are performing must be $F^{-1}$, so $\bar{Z} \mapsto \bar{X}$. We can check this without too much difficulty: $\bar{Z} \mapsto \bar{Z}^{\prime}=X^{2} \otimes X \otimes X^{5} \otimes I \otimes I$. We can identify this as $\bar{X}$ times the square of the first $X$ generator (in systematic form) times the fifth power of the second $X$ generator.
For the logical $R$ gate (quadratic phase gate), we will do some power of $R$ on each qudit, since that maps $X \mapsto X Z^{a}$. Indeed, if we use the same powers as for the Fourier transform,

$$
\begin{align*}
& X_{1} \mapsto X_{1} Z_{1}^{2}  \tag{21}\\
& X_{2} \mapsto X_{2} Z_{2}^{3}  \tag{22}\\
& X_{3} \mapsto X_{3} Z_{3}^{4}  \tag{23}\\
& X_{4} \mapsto X_{4} Z_{4}^{5}  \tag{24}\\
& X_{5} \mapsto X_{5} Z_{5}^{6} \tag{25}
\end{align*}
$$

We already know that the first $X$ generator will be mapped to itself times the first $Z$ generator, and the second $X$ generator will be mapped to itself times the cube of the second $Z$ generator. Therefore this is a valid transversal gate. We can identify it immediately as $R^{-1}$, since

$$
\begin{equation*}
\bar{X} \mapsto X Z^{2} \otimes X Z^{3} \otimes X Z^{4} \otimes X Z^{5} \otimes X Z^{6}=\overline{X Z}^{-1} \tag{26}
\end{equation*}
$$

(The $Z$ generators and $\bar{Z}$ get trivially mapped to themselves.)
This gives us $S U M, F^{-1}$, and $R^{-1}$, which is clearly also a generating set of the qudit Clifford group (e.g., $F=\left(F^{-1}\right)^{3}$ and $R=\left(R^{-1}\right)^{6}$ ). Therefore all Clifford group operations can be performed transversally on this code.

