
Solution Set #9

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. Entanglement-Assisted Quantum Error Correction

a) For the 4-qubit error-detecting code, we use the [[4, 2, 2]] code with stabilizer generated by X⊗X⊗X⊗X
and Z ⊗ Z ⊗ Z ⊗ Z. Initially, Alice and Bob share an EPR pair with stabilizer I ⊗ I ⊗ X ⊗ X and
I ⊗ I ⊗Z ⊗Z (the first two qubits being Alice’s input data qubits, and the fourth qubit being held by
Bob).

Clearly, to do this encoding, Alice must choose a Clifford group operation that takes I ⊗ I ⊗ X 7→
X ⊗X ⊗X and I ⊗ I ⊗Z 7→ Z ⊗Z ⊗Z. Such a Clifford group operation certainly exists since the two
initial operators and the two final operators both anticommute. For instance, we can use the following
circuit:

sg
g s

g sg
If there is an error in the channel, it takes place on one of the first three qubits. Bob can detect it
because the code is a distance 2 code. Indeed, he could have detected an error even if it was on the
fourth qubit instead, so there is some extra power in this code which he is not using.

b) In general, we can choose products of the Mis so that the products commute and anticommute in pairs.
That is, we can choose M ′

i , i = 1, . . . , r such that {M2j−1,M2j} = 0 for j ≤ j0, and [Mk,Mk′ ] = 0
unless k = 2j − 1, k′ = 2j, with j ≤ j0 (or vice-versa). If all the Mis commute to begin with, they are
already in this form, with j0 = 0. Otherwise, we put them in the requisite form by first identifying a
pair Mi1 and Mi2 that anticommute and making them M ′

1 and M ′
2. If any other Mi anticommutes with

Mi1 , multiply it by Mi2 , and if Mi anticommutes with Mi2 , multiply it by Mi1 . (If Mi anticommutes
with both, we thus multiply it by both.) After these multiplications, the remaining modified Mis
commute with both M ′

1 and M ′
2.

Then we pick another anticommuting pair and repeat the procedure until all remaining modified Mis
commute with each other. The number of pairs we need to select this way gives us j0, an invariant
property of the original set {Mi}, essentially identifying the amount of anticommutativity in the group
generated by the set. Also note that M ′

is generate the same group as the original set {Mi}, and, in
particular, it is possible to write each Mi as a product

Mi =
∏
k

(M ′
k)cik , (1)

with cik a binary r × r invertible matrix.
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The set {M ′
k} by itself cannot generate a stabilizer unless j0 = 0. We need to choose N ′

is to cancel the
anticommutativity. We thus set n′ = j0, and let N ′

2j−1 = Xj , N ′
2j = Zj (j ≤ j0), or N ′

k = I (k > 2j0).
Xj and Zj are the X and Z operators on the jth qubit out of the additional n′ qubits. We then define
a stabilizer S generated by M ′

i ⊗N ′
i . Since each Mi =

∏
(M ′

k)cik , and cik is invertible, we can choose
alternate generators for S in the form Mi ⊗Ni, with

Ni =
∏
k

(N ′
k)cik . (2)

No value of n′ less than j0 will work, since there will inevitably always then be two generators of the
stabilizer that will anticommute. Consider the group generated by the Mis and consider its center Z
(the subgroup of elements that commute with all the Mis). Clearly Z is the group generated by M ′

k,
for k > 2j0, and is in invariant property of the set {Mi}, no matter how we choose anticommuting
pairs in the procedure above. The size of Z tells us j0: 2j0 = r − log2 |Z|.

c) We can choose a Clifford group operation that maps Xj 7→ M ′
2j−1, Zj 7→ M ′

2j (j ≤ j0), and Zk 7→ M ′
k+j0

(j0 < k ≤ r − j0), since this transformation preserves commutation and anticommutation. Then we
find that n′ = j0 EPR pairs plus r − 2j0 ancilla qubits which start as |0〉 map to the stabilizer S.
Therefore, we can set n − k′ − n′ = r − 2j0, or k′ = (n − j0) − (r − 2j0) = n + j0 − r, and given any
value of the k input data qubits, Bob’s n + n′ qubits will end up in a codeword of S.

d) Suppose E 6∈ N(S). Then we can certainly detect it. Since E acts on only the n qubits held initially by
Alice, E 6∈ N(S) iff {E,Mi} = 0 for some i ∈ {1, . . . , r}; that is, E anticommutes with some operator
from the original set.

Similarly, if E ∈ N(S) \S, we cannot detect it. As above, E ∈ N(S) iff it commutes with all Mis. But
what does it mean for E ∈ S? It is not sufficient for E ∈ S that E is in the group generated by the
Mis: Imagine E = M ′

2j−1 for j ≤ j0; then E 6∈ S, and indeed {E,M ′
2j} = 0. We conclude that E ∈ S

iff E is in the group generated by the set {M ′
k} for k > 2j0. (That is, the center Z mentioned at the

end of the solution to part b above.)

Thus, E is detectable iff it either anticommutes with some Mi, or if it is in the group Z generated by
the set {M ′

k} for k > 2j0. (For this condition, it is actually sufficient, after all, to say that it is in the
group generated by the Mis, since if it is in this group but outside SA, it actually anticommutes with
some Mi.) E is undetectable iff it commutes with all Mis but is not in SA.

If Alice uses the protocol catalytically, she uses j0 of the k′ encoded qubits to create new EPR pairs
to replace the ones used in the protocol. Since k′ = n + j0 − r, it follows that k = n− r.

Problem #2. Two-Way Entanglement Distillation

a) We start with two Bell states, eigenstates of X ⊗ X and Z ⊗ Z with syndromes (x, z) and (x′, z′),
respectively. Nontrivial z syndromes correspond to X errors, and nontrivial x syndromes correspond
to Z errors, whereas a Y error leads to both syndromes being nontrivial.

The CNOTs change the stabilizer generators to

(−1)xXX⊗XX (3)

(−1)x′
IX⊗IX (4)

(−1)zZI⊗ZI (5)

(−1)z′
ZZ⊗ZZ (6)
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(with the left two qubits being held by Alice and the right two being held by Bob). We can replace the
first and last generators by taking products of the first two and last two generators, so an equivalent
presentation of the stabilizer is:

(−1)x⊕x′
XI⊗XI (7)

(−1)x′
IX⊗IX (8)

(−1)zZI⊗ZI (9)

(−1)z⊕z′
IZ⊗IZ (10)

This we identify as two Bell pairs, with syndromes (x⊕ x′, z) and (x′, z ⊕ z′). (In particular, the first
pair, when we keep it, is a mixture of Bell states.)

When Alice and Bob measure Z for the second pair, they get the same result, and thus end up keeping
the state, iff z ⊕ z′ = 0. The probability that z is 0 is 1 − p + p/3 = 1 − 2p/3 (since a pure Z error
causes 0 z syndrome), and similarly for z′. Alice and Bob keep the state when both are 0 or when
both are 1. This happens with probability Pkeep:

Pkeep = (1− 2p/3)2 + (2p/3)2 = 1− 4
3
p +

8
9
p2. (11)

b) To calculate the conditional probability of X, Y , and Z errors, it is perhaps most straightforward to
simply make a list of all possible errors with the resulting error on the first pair after the CNOTs
(based on the first pair having syndrome (x⊕ x′, z)).

Error keep? first pair prob.

II yes I (1− p)2

IX no I p(1− p)/3
IY no Z p(1− p)/3
IZ yes Z p(1− p)/3
XI no X p(1− p)/3
XX yes X p2/9
XY yes Y p2/9
XZ no Y p2/9
Y I no Y p(1− p)/3
Y X yes Y p2/9
Y Y yes X p2/9
Y Z no X p2/9
ZI yes Z p(1− p)/3
ZX no Z p2/9
ZY no I p2/9
ZZ yes I p2/9

We then calculate the conditional probabilities by adding up the absolute probabilities for the relevant
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yes cases and dividing by the probability of keeping the state:

PI =
[
(1− p)2 + p2/9

]
/Pkeep =

1− 2p + 10
9 p2

1− 4
3p + 8

9p2
(12)

PX =
(

2
9
p2

)
/Pkeep (13)

PY =
(

2
9
p2

)
/Pkeep (14)

PZ =
[
2
3
p(1− p)

]
/Pkeep (15)

Clifford twirling mixes and redistributes the X, Y , and Z errors, but does nothing when there is no
error, so the depolarizing channel error rate after twirling is

PX + PY + PZ =
[ 2

3 −
2
9p

1− 4
3p + 8

9p2

]
p. (16)

We thus find the error rate decreases iff

2
3
− 2

9
p < 1− 4

3
p +

8
9
p2, (17)

that is, if
8
3
p2 − 10

3
p + 1 = (2p− 1)(

4
3
p− 1) > 0. (18)

If p < 1/2, this is true, so the error rate decreases. (It is also true if p > 3/4, but then repeated
iterations will drive p → 3/4, which gives the completely mixed state.)

c) We can again consult the chart in part b, and we find that the I, X, Y , and Z outcomes, conditioned
on throwing away the state, all have probability[

p(1− p)/3 + p2/9
]
/(1− Pkeep). (19)

In other words, PI = PX = PY = PZ = 1/4. The discarded states are completely randomized.
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