Problem Set #1

Quantum Error Correction Instructor: Daniel Gottesman

Due Thursday, May 26, 2016

Problem #1. Unitary decoder

Suppose $\mathcal{H}_N = \mathcal{H}_A \otimes \mathcal{H}_B$, with $\mathcal{H}_B = \mathcal{H}_K$ the logical Hilbert space and \mathcal{H}_N the physical Hilbert space. (Note that this is not the same tensor product decomposition as the physical qubits; we are not even assuming there is a natural set of physical qubits here.) Also assume the errors map \mathcal{H}_N to itself and that this is a QECC for set \mathcal{E} of errors. Show that there exists unitary U such that $U|_{|0\rangle\otimes B} = I$ (in which case U can be the encoder) and U^{\dagger} followed by discarding the \mathcal{H}_A subspace acts as a decoder map for the QECC.

Problem #2. Example stabilizer

For each of the following sets of Paulis, determine if they define valid stabilizers. If so, give their parameters [[n, k, d]].

a) Stabilizer is all products of these operators:

X	X	Z	Y	Ι
Z	Y	Ι	Ι	X
X	Ι	X	Z	Z

b) Stabilizer is all products of these operators:

X	X	X	X	X	X
Y	Y	Y	Y	Y	Y
Z	Z	Z	Z	Z	Z

c) In binary symplectic matrix form:

$\left(0 \right)$	0	1	1	0	1	0	0	0	0	0	$0 \rangle$
1	1	1	0	0	0	0	1	1	0	1	0
0	0	0	0	0	0	1	0	1	1	1	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$

d) The stabilizer corresponding to the GF(4) linear code with the following parity check matrix:

 $\begin{pmatrix} 0 & 1 & 1 & \omega & \omega^2 \end{pmatrix}$

Problem #3. Stabilizer generating sets

Suppose we have a set of stabilizer generators $\{M_1, \ldots, M_r\}$ for a stabilizer S and $N \in S$ is not a generator. Show that we can remove an element of the original generating set and replace it with N to get a new minimal generating set.

Problem #4. Low-density parity check CSS codes

A classical LDPC ("low density parity check") code is an [n, k, d] linear code where each row of the parity check matrix has at most r 1's and each column of the parity check matrix has at most c 1's, with r and c of constant size (as n gets large). (Sometimes LDPC codes with r and c increasing sublinearly with n are also considered, but assume r and c are constant for the purposes of this problem.) Classical LDPC codes are interesting because they can achieve good values of k/n, d/n, and also generally have good decoding algorithms.

A quantum LDPC code is a stabilizer code for which each generator has low weight and each qubit appears in only a small number of generators. One might try to make good quantum LDPC codes using the CSS construction, based on pairs of classical LDPC codes $C_1(n)$ and $C_2(n)$. Suppose that one finds a family of such codes which produce [[n, k, d]] quantum codes with k/n and d/n both constant as n gets large. Show that this family of quantum codes must be degenerate for large n.

[No such family is known in the quantum case. The point of the problem is that, because degeneracy is important to find such codes, the quantum case is not a straightforward application of the CSS construction.]