Problem Set \#3

Quantum Error Correction
Instructors: Daniel Gottesman and Beni Yoshida

Due Thursday, Jan. 25, 2018

Problem \#1. Quantum Hamming bound for qudit codes

The quantum Hamming bound for qudits of dimension p becomes

$$
\begin{equation*}
\sum_{s=0}^{t}\binom{n}{s}\left(p^{2}-1\right)^{s} \leq p^{n-k} \tag{1}
\end{equation*}
$$

which must hold for non-degenerate $\left(\left(n, p^{k}, 2 t+1\right)\right)_{p}$ codes.
a) For what values of p does a $[[5,1,3]]_{p}$ code saturate the quantum Hamming bound?
b) For what values of p would a $[[9,1,5]]_{p}$ code saturate the quantum Hamming bound? For which values of p would the code violate the quantum Hamming bound? (Note that such a code is only known to exist for prime power p with $p \geq 9$.)
c) For $p=3$, find the smallest integer values of n and k such that an $[[n, k, 3]]_{3}$ code saturates the quantum Hamming bound or show that no integer n and k work.

Problem \#2. Logical operations for qudit code

Consider the following stabilizer code for qutrits (qudits with dimension $p=3$):

$$
\begin{array}{cccc}
X & X & Z & Z \\
Z & Z & X & X
\end{array}
$$

a) What are its parameters as a QECC?
b) Find a generating set for the logical Pauli group. (I.e., coset representatives for \bar{X}_{i} and \bar{Z}_{i}).
c) For your choice of logical Pauli operators, write down the codeword with all logical qubits 0 expanded in the standard basis for the physical qubits.

