Problem Set #3

Quantum Error Correction Instructors: Daniel Gottesman and Beni Yoshida

Due Thursday, Jan. 25, 2018

Problem #1. Quantum Hamming bound for qudit codes

The quantum Hamming bound for qudits of dimension p becomes

$$\sum_{s=0}^{t} \binom{n}{s} (p^2 - 1)^s \le p^{n-k},\tag{1}$$

which must hold for non-degenerate $((n, p^k, 2t + 1))_p$ codes.

- a) For what values of p does a $[[5, 1, 3]]_p$ code saturate the quantum Hamming bound?
- b) For what values of p would a $[[9, 1, 5]]_p$ code saturate the quantum Hamming bound? For which values of p would the code violate the quantum Hamming bound? (Note that such a code is only known to exist for prime power p with $p \ge 9$.)
- c) For p = 3, find the smallest integer values of n and k such that an $[[n, k, 3]]_3$ code saturates the quantum Hamming bound or show that no integer n and k work.

Problem #2. Logical operations for qudit code

Consider the following stabilizer code for qutrits (qudits with dimension p = 3):

$$\begin{array}{cccccc} X & X & Z & Z \\ Z & Z & X & X \end{array}$$

- a) What are its parameters as a QECC?
- b) Find a generating set for the logical Pauli group. (I.e., coset representatives for \overline{X}_i and \overline{Z}_i).
- c) For your choice of logical Pauli operators, write down the codeword with all logical qubits 0 expanded in the standard basis for the physical qubits.