- Home »
- Entanglement wedge reconstruction and operator algebras

COVID-19 information for PI Residents and Visitors

In order to satisfy the Reeh-Schlieder theorem, I study the infinite-dimensional Hilbert spaces using von Neumann algebras. I will first present the theorem that the entanglement wedge reconstruction and the equivalence of relative entropies between the boundary and the bulk (JLMS) are exactly identical. Then I will demonstrate the entanglement wedge reconstruction with a tensor network model of von Neumann algebra with type II1 factor, which guarantees the equivalence between the boundary and the bulk. I will further sketch that this toy model can be generalized to provide more general von Neumann algebras, including the case of a type III1 factor. This can give further insights to understanding quantum gravity from an algebraic perspective.

COVID-19 information for PI Residents and Visitors

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Tuesday, December 10, 2019 - 14:30 to 16:00

Location:

Space Room

Room #:

400

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics