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1. We defined in the lecture that a language L is in BQP if there is a
family F = {Cn} of polynomial size quantum circuits (made of say
two-qubit unitary gates) s.t.:

• every circuit Cn has an input x of |x| = n bits andm = O(poly(n))
additional ancilla qubits initialized to |0〉

• the output of the computation is considered to be the outcome
of the measurement on a designated ancila qubit.

• the size of the circuits, |Cn|, grows polynomially in n.

• there is a polynomial time Turing Machine that on input 1n out-
puts Cn (this is the condition we glossed over, and you can es-
sentially ignore it for this problem set)

• and most importantly

– if x ∈ L, and |x| = n then Pr(Cn(x) = 1) ≥ 2/3

– if x /∈ L, and |x| = n then Pr(Cn(x) = 0) ≥ 2/3

Show that BQP with error probability 1/3 equals BQP with error
probability 2−n using the following:

(a) The majority function of n bits can be computed classically effi-
ciently.

(b) Any classical computation can be done on a quantum computer
with the same number of gates (as shown in Watrous’s course).

(c) The Chernoff bound: Let b1, ...bn ∈ {0, 1} be i.d.d. random vari-
ables. Let B =

∑
i bi and µ = E[B] be the expected value of B.

Then for any 0 < δ < 1,

Pr(B ≥ (1 + δ)µ) ≤ e−
δ2µ

3 (1)

2. We mentioned in the lecture two types of constraints on the locality
of our physical systems: They can either involve only k-local inter-
actions, but with no geometrical constraints (call it non-geometrical
locality), or there could actually be geometrical constraints, say the
qubits are set on a 1-Dim lattice and interactions are allowed only
between nearest neighbors.
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Show that the problem of simulating a quantum circuit with a non-
geometrical nocality can be reduced (using a classical efficient com-
putation) to the problem of simulating a quantum circuit which is
geometrically constrainted to be in one dimensions. (hint: the 1D sys-
tem is allowed to use any two qubit gates as long as they are applied
on nearest neighbors. Use the gate which swaps two qubits.)

3. consider the very simple one local Hamiltonian acting on n+1 qubits,
defined as H = Πn+1 where Π = |−〉 〈−| (and |−〉 = 1

√

2
(|0〉 − |1〉)),

and Πn+1 means that this projection is applied to the right most qubit.
(The Hamiltonian does nothing to the other qubits). Consider the n+1
qubit state for arbitrary complex n qubit states |α〉 and |β〉. What is
the expectation value of the energy with respect to H of the state

1√
2
(|α〉 ⊗ |0〉+ |β〉 ⊗ |1〉) (2)

Express this energy as a function of the inner product between |α〉 and
|β〉.

4. Consider a very simple quantum circuit consiting of just one two qubit
gate, which acts on two qubits initialized to the state |0〉 |ψ〉, where ψ
is unknown. The gate is defined as the unitary |00〉 → 1

√

2
(|00〉+ |11〉)

and |01〉 → 1
√

2
(|00〉 − |11〉) (we actually need not to specify what the

gate does to the other basis states for this question).

(a) What is the history state of the circuit (using one qubit to count
the time passing from 0 to 1)?

(b) Apply the circuit to Hamiltonian construction (using one qubit
for the clock) to find a Hamiltonian whose ground state is the
history state of the circuit.

(c) What is the ground energy of this Hamilonian? What is its
ground state?

(d) Is the Hamiltonian frustrated?

5. Repeat question 3 except now the gate is changed: |00〉 → 1
√

2
(|00〉 +

|11〉) and |01〉 → 1
√

2
(|01〉 + |10〉).

(d) Calculate the probability of the right qubit to be 1 for any given
input state |ψ〉.

2



(e) Argue why the Hamiltonian is frustrated. (as a bonus, write it
as a Hermitian matrix, and find its ground state numerically.)

6. Recall the following two assumptions:

(a) the quantum Church Turing thesis (which is strongly believed to
hold), which states that “any physically realizable computational
model can be simulted by a quantum computer efficiently (with
polynomial overhead).

(b) And another assumption which is strongly believed to hold, com-
ing from intuition regarding hard problems, is that a quantum
computer will need exponential time to solve a QMA hard prob-
lem. (this is a strengthening of the assumption that QMA is
strictly larger than BQP ).

Recall also the result mentioned in class (the proof of which we did
not see), which states that the local Hamiltonian problems for 2-local
interactions between particles set on a line, where the interactions are
only between nearest neighbors, is QMA-complete. (for this result
we use 8 dimensional particles - which is higher than 2, but still a
constant).

Using the above, argue why there should exist one dimensional physical
systems set on the line (with nearest neighbor interactions only) for
which the relaxation time to the ground state will take time which is
exponential in the size of the system.
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