This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.
A planar map is a canonical model for a discrete surface which is studied in probability theory, combinatorics, theoretical physics, and geometry. Liouville quantum gravity provides a natural model for a continuum random surface with roots in string theory and conformal field theory. After introducing these objects, I will present a joint work with Xin Sun where we prove convergence of random planar maps to a Liouville quantum gravity surface under a discrete conformal embedding which we call the Cardy embedding.
In this talk I will introduce the Fully Constrained Formulation (FCF) of General Relativity. In this formulation one has a hyperbolic sector and an elliptic one. The constraint equations are solved in each time step and are encoded in the elliptic sector; this set of equations have to be solved to compute initial data even if a free evolution scheme is used for a posterior dynamical evolution. Other formulations (like the XCTS formulation) share a similar elliptic sector. I will comment about the local uniqueness issue of the elliptic sector in the FCF.
The Event Horizon Telescope is a global effort to construct an
Earth-sized virtual radio telescope array, with the goal to make pictures and
movies of two nearby supermassive black holes. A detailed theoretical
understanding of black hole accretion is now crucial to interpret these
observations. I will review our current efforts to model polarimetric
properties of light produced in synchrotron processes in plasma falling
towards the event horizon. The numerical models are based on general
In string compactifications the roles of physics and geometry are intrinsically intertwined. While the goals of these 4-dimensional effective theories are physical, the path to those answers frequently leads to cutting-edge challenges in modern mathematics. In this talk, I will describe recent progress in characterizing the geometry of Calabi-Yau manifolds in terms their description as elliptic fibrations. This description has remarkable consequences for the form of the string vacuum space and the properties of string effective theories, including particle masses and couplings.
A vibrant program has formed in recent years in various scientific disciplines to take advantage of near-term and future quantum-simulation and quantum-computing hardware to study complex quantum many-body systems, building upon the vision of Richard Feynman for quantum simulation. Such activities have recently started in nuclear and particle physics, hoping to bring new and powerful experimental and computational tools to eventually address a range of challenging problems in strongly interacting quantum field theories and nuclear many-body systems.
A dark matter candidate lighter than about 30 eV exhibits wave behavior in a typical galactic environment. Examples include the QCD axion as well as other axion-like-particles. We review the particle physics motivations, and discuss experimental and observational implications of the wave dynamics, including interference substructures, vortices, soliton condensation and black hole hair.
Gravitational waves provide a unique way to study the universe. From the initial direct detection of coalescing black holes in 2015, to the ground-breaking multimessenger observations of coalescing neutron stars in 2017, and continuing with the now routine detection of merging stellar remnants, gravitational wave astronomy has quickly matured into a key aspect of modern physics.
A standard account of the measurement chain in quantum mechanics involves a probe (itself a quantum system) coupled temporarily to the system of interest. Once the coupling is removed, the probe is measured and the results are interpreted as the measurement of a system observable. Measurement schemes of this type have been studied extensively in Quantum Measurement Theory, but they are rarely discussed in the context of quantum fields and still less on curved spacetimes.
We present a quantum architecture based on a linear chain of trapped 171Yb+ ions with individual laser beam addressing and readout. The collective modes of motion in the chain are used to efficiently produce entangling gates between any qubit pair. In combination with a classical software stack, this becomes in effect an arbitrarily programmable and fully connected quantum computer. The system compares favorably to commercially available alternatives [2].
The idea that structure in the Universe was created from quantum mechanical vacuum fluctuations during inflation is very compelling, but unproven. Finding a test of this proposal has been challenging because the universe we observe is effectively classical. I will explain how quantum fluctuations can give rise to the density fluctuations we observe and will show that we can test this hypothesis using the statistical properties of maps of the universe.