Condensed Matter

This series consists of talks in the area of Condensed Matter.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.
 

 

Tuesday Jul 16, 2019
Speaker(s): 

Self-learning Monte Carlo (SLMC) method is a general-purpose numerical method to simulate many-body systems. SLMC can efficiently cure the critical slowing down in both bosonic and fermionic systems. Moreover, for fermionic systems, SLMC can generally reduce the computational complexity and speed up simulations even away from the critical points. For example, SLMC is more than 1000 times faster than the conventional method for the double exchange model in 8*8*8 cubic lattice.

Collection/Series: 
Scientific Areas: 

 

Wednesday Jun 26, 2019
Speaker(s): 

The appearance of scale invariance and diverging response functions in many-body systems is inseparably linked to the presence of a critical point and spontaneous symmetry breaking. In thermal equilibrium critical points mostly correspond to isolated spots in parameter space, which require rather strong fine tuning of e.g., the temperature of magnetic fields, in order to be reached. Pushing systems away from thermal equilibrium, e.g., by exposing them to external drive fields or dissipation, can give rise to more unconventional forms of criticality.

Collection/Series: 
Scientific Areas: 

 

Tuesday Jun 11, 2019
Speaker(s): 

Fracton order is a new kind of phase of matter which is similar to topological order, except its excitations have mobility constraints. The excitations are bound to various n-dimensional surfaces with exotic fusion rules that determine how excitations on intersecting surfaces can combine.

Collection/Series: 
Scientific Areas: 

 

Tuesday May 14, 2019
Speaker(s): 

Recently, a new family of correlated honeycomb materials with strong spin-orbit coupling have been promising candidates to realize the Kitaev spin liquid.

Collection/Series: 
Scientific Areas: 
 

 

Thursday May 02, 2019
Speaker(s): 

Kitaev materials — spin-orbit assisted Mott insulators, in which local, spin-orbit entangled j=1/2 moments form that are subject to strong bond-directional interactions — have attracted broad interest for their potential to realize spin liquids. Experimentally, a number of 4d and 5d systems have been widely studied including the honeycomb materials Na2IrO3, α-Li2IrO3, and RuCl3 as candidate spin liquid compounds — however, all of these materials magnetically order at sufficiently low temperatures.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Apr 30, 2019
Speaker(s): 

We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentally in a Rydberg-atom quantum simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initialized in a particular product state. This pronounced coherence has been attributed to the presence of special "scarred" eigenstates with nearly equally-spaced energies and putative nonergodic properties despite their finite energy density.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Apr 16, 2019
Speaker(s): 

We study the possibility of a deconfined quantum phase transition in a realistic model of a two dimensional Shastry-Sutherland quantum magnet, using both numerical and field theoretic techniques. We argue that the quantum phase transition between a two fold degenerate plaquette valence bond  solid (pVBS) order and N\'eel ordered phase may be described by a deconfined quantum critical point (DQCP) with emergent O(4) symmetry.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Apr 09, 2019
Speaker(s): 

The construction of soluble lattice toy models is an important theoretical approach in the study of strongly interacting topological phases of matter. On the other hand, the primary experimental probe to such systems is via electromagnetic response. Somewhat unsatisfactorily, the current systematic construction of the lattice toy models focuses on braiding statistics and does not admit coupling to an electromagnetic background. Thus there is a mismatch between our theoretical approach and experimental probe.

Collection/Series: 
Scientific Areas: 

Pages