Cosmology & Gravitation

This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.

Seminar Series Events/Videos

Jun 4 2019 - 2:00pm
Room #: 405
Speaker(s):
Scientific Areas:
 

 

Tuesday May 21, 2019
Speaker(s): 

The history of the baryonic (normal) matter in the universe is an excellent probe of the  formation of cosmic structures and the evolution of galaxies.  Over the last decade, considerable effort has gone into investigating the physics of baryonic material, particularly after the epoch of Cosmic Dawn: signalling the birth of the earliest stars and 

Collection/Series: 
Scientific Areas: 
 

 

Tuesday May 14, 2019
Speaker(s): 

Fundamental physics traditionally views the dynamical laws governing the world as time reversal invariant. The evident arrow of time of nature is then held to be an accident, emerging as we coarse grain and originating in the improbable choice of initial conditions. The main pillar which supports this time-symmetric lifestyle is the fluctuation-dissipation theorem, which connects purely time-symmetric microscopic equations to the emergence of a macroscopic arrow of thermodynamics.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Apr 09, 2019
Speaker(s): 

Large scale B-mode patterns in CMB polarization, if detected, would constitute a “smoking gun” signature of primordial gravitational waves generated during an inflationary phase in the early universe. In this talk, I will discuss other sources of B-modes, such as primordial magnetic fields, axion-like fields and cosmic strings, and prospects of isolating their distinguishing features with future CMB measurements.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Mar 26, 2019
Speaker(s): 

I'll discuss recent work on finding time-dependent solutions of a black hole interacting with a scalar field. I'll discuss two distinct cases where the back-reaction of the scalar can be found. First, in the case that the scalar is slowly rolling (such as in inflation) the scalar field can be found in terms of super-advanced time coordinate, regular on both horizons. The scalar back-reacts on the geometry, with the black hole accreting and growing more or less as expected.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Mar 12, 2019
Speaker(s): 

Quasars are among the most powerful light sources in the universe and, as such, can be seen at cosmological distances. Is some rare occasions (although not that rare), a massive galaxy on their line of sight can act as a gravitational lens and produce multiple images of distant quasars. These can be used both for cosmology and astrophysics by measuring the so-called time delays between the lensed images from photometric monitoring, a quantity directly related to the Hubble-Lemaître parameter H0.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Feb 05, 2019
Speaker(s): 

Quantum decay of false vacuum states via the nucleation of bubbles may 
have played an important role in the early history of our Universe.  For 
example, in multiverse models that utilize false vacuum eternal 
inflation, the Big Bang of our observable Universe corresponds to one of 
these bubble nucleation events.  Further, our observable Universe may 
have undergone a series of symmetry-breaking first-order phase 
transitions as it cooled, which may have produced a remnant background 
of gravitational waves.

Collection/Series: 
Scientific Areas: 
 

 

Monday Jan 14, 2019
Speaker(s): 

Cosmic Microwave Background (CMB) is a powerful probe to the Universe which carries signatures of cosmic secrets over a vast range of redshifts. Along with spatial fluctuations, spectral distortions of CMB blackbody are also a rich source of cosmological information. In my talk, I will introduce a new kind of spectral distortion of CMB which can arise due to the conversion of CMB photons into Axion-Like Particles (ALPs) in the presence of an external magnetic field.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Dec 18, 2018
Speaker(s): 

Infrared sensitivity of the de Sitter decay rate due to particle creation requires that gravitational backreaction be taken into account on the horizon scale. At lowest order, backreaction can be studied by Linear Response of the geometry to quantum matter perturbations around the Bunch-Davies state. In Linear Response the scalar degree of freedom derived from the conformal anomaly gives rise to scalar gravitational waves that grow without bound on the de Sitter horizon scale,  which implies substantial non-linear quantum backreaction effects in cosmology.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Oct 30, 2018
Speaker(s): 

In July 2018 the Planck Collaboration released its final set of cosmology results. I will discuss some of the  interesting new science that remains to be done with the CMB, including some not so often discussed topics such as the kinetic SZ effect and 21cm cross-correlations.

 

Collection/Series: 
Scientific Areas: 
 

 

Thursday Oct 25, 2018
Speaker(s): 

In this third of 3 talks I will discuss the effects of the conformal anomaly in the low energy infrared relevant correction to General Relativity. Among the significant implications of this effective field theory of gravity are the prediction of scalar gravitational wave solutions—a spin-0 breather mode— in addition to the transversely polarized tensor waves of the classical Einstein theory.

Collection/Series: 
Scientific Areas: 

Pages