Cosmology & Gravitation

This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.
 

 

Tuesday Jul 07, 2020
Speaker(s): 

Zoom Link:  https://pitp.zoom.us/j/93581608531?pwd=d3NRQXRGNTNISkhuWmxLYkJMZllTUT09

Based on recent work arXiv:1902.08207 and arXiv:1911.02018 with E. Verlinde.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Jun 30, 2020
Speaker(s): 

Over the last decade, the Effective Field Theory of Large Scale Structure (EFTofLSS) has emerged as a frontrunner in the effort to produce accurate models of cosmological statistics. Quantities such as power spectra can be fit with sub-percent precision, and there is a wealth of literature applying the formalism to more complex statistics. It is interesting to ask what lies ahead for the theory. Can it be used for cosmological parameter inference? And is it just for statistics based on the 3D density field?

 

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Jun 16, 2020
Speaker(s): 

COVID-19 is a mysterious disease associated with a large number of unanswered questions. 

In this talk we review what is currently known, what is still a mystery and highlight some of our recent work on the role of climate, blood type and vaccinations on the transmission of the disease and on the extent of "dark infections", the asymptomatic and untested proportion of infections. We end with a list of open research questions that may be amenable to techniques from physics and data science.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday May 19, 2020
Speaker(s): 

The discovery of the Higgs boson has revealed that the quartic Higgs self-coupling becomes small at very high energy scales. Guided by this observation, I introduce Higgs Parity, which is a spontaneously broken symmetry exchanging the standard model Higgs with its parity partner. In addition to explaining the small Higgs quartic coupling, Higgs Parity can provide a dark matter candidate, solve the strong CP problem, and arise from an SO(10) grand unified gauge symmetry.

Collection/Series: 
Scientific Areas: 

 

Thursday Feb 06, 2020
Speaker(s): 

Through their observable properties, the first and smallest dark matter halos represent a rare probe of subkiloparsec-scale variations in the density of the early Universe. These density variations could hold clues to the nature of inflation, the postinflationary cosmic history, and the identity of dark matter. However, the dynamical complexity of these microhalos hinders their usage as cosmological probes.

Collection/Series: 
Scientific Areas: 

 

Thursday Feb 06, 2020
Speaker(s): 

CMB lensing tomography has the potential to map the amplitude and growth of structure over cosmic time, provide some of the most stringent tests of gravity, and break important degeneracies between cosmological parameters. I use the unWISE photometric galaxy catalog to create three samples at median redshifts z~0.6, 1.1, and 1.5, and cross-correlate them with the most recent Planck CMB lensing maps.

Collection/Series: 
Scientific Areas: 

 

Tuesday Jan 28, 2020

We propose a model for combining the Standard Model (SM) with gravity. It relies on a non-minimal coupling of the Higgs field to the Ricci scalar and on the Palatini formulation of gravity. Without introducing any new degrees of freedom in addition to those of the SM and the graviton, this scenario achieves two goals. First, it generates the electroweak symmetry breaking by a non-perturbative gravitational effect. In this way, it does not only address the hierarchy problem but opens up the possibility to calculate the Higgs mass.

Collection/Series: 
Scientific Areas: 

 

Tuesday Jan 28, 2020
Speaker(s): 

Cosmologists wish to explain how our universe, in all its complexity, could ever have come about. This is the problem of initial conditions and the first step towards its solution is the assessment of the universe’s entropy today. It is widely agreed upon that the entropy of vacuum energy, given by the Bekenstein bound, makes up the bulk of the current entropy budget, dominating over that of gravity and over thermal motions of the cosmic radiation background.

Collection/Series: 
Scientific Areas: 

 

Tuesday Jan 21, 2020
Speaker(s): 

In this talk, I will outline the forward model approach to reconstruct cosmological fields in a Bayesian framework. I will focus on two examples - galaxy clustering and neutral hydrogen intensity mapping.

Collection/Series: 
Scientific Areas: 

 

Tuesday Jan 14, 2020
Speaker(s): 

Primordial SU(2) gauge fields and axions can contribute to the physics of
inflation. In this class of models, both the gauge field and axion acquire
a VEV, which is P and CP breaking and enriches the phenomenology of
particles with spin. Their multifaceted phenomenology and unique
observational signatures, e.g., chiral primordial gravitational waves and
gravitational leptogenesis, turned this class of models to a hot topic of
research in the past nine years. In this talk, first, I will briefly

Collection/Series: 
Scientific Areas: 

Pages