Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
For most variations of Quantum finite automata (QFA), it is an open question to characterize the language recognition power of these machines. We extend several techniques used to obtain lower bounds on Kondacs and Watrous' 1-way Quantum Finite Automata to the case of Nayak's Generalized Quantum Finite Automata (GQFA). A consequence of these results is that the class of languages recognized by GQFAs is not closed under union.
A new source of polarization entangled photons is presented based on a bidirectionally pumped spontaneous parametric down-conversion crystal in the loop of a Sagnac interferometer. The source is pumped with a pulsed Ti:SA laser, allowing for high photon pair production rates and the potential for multi-photon experiments. Implementation, detection, and preliminary experimental results will be discussed.
Almost all known superpolynomial quantum speedups over classical algorithms have used the quantum Fourier transform (QFT). Most known applications of the QFT make use of the QFT over abelian groups, including Shor’s well known factoring algorithm [1]. However, the QFT can be generalised to act on non-abelian groups allowing different applications. For example, Kuperberg solves the dihedral hidden subgroup problem in subexponential time using the QFT on the dihedral group. The aim of this research is to construct an efficient QFT on SU(2).
An approximate quantum encryption scheme uses a private key to encrypt a quantum state while leaking only a very small (though non-zero) amount of information to the adversary. Previous work has shown that while we need 2n bits of key to encrypt n qubits exactly, we can get away with only n bits in the approximate case, provided that we know that the state to be encrypted is not entangled with something that the adversary already has in his possession.