Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk, we present a new outlook on canonical quantum gravity and its coupling to matter.
Let G be a complex reductive group, and X be any smooth projective G-variety. In this talk, we will construct an algebra homomorphism from the G-equivariant homology of the affine Grassmannian Gr_G to the G-equivariant quantum cohomology of X. The construction uses shift operators in quantum cohomologies. We will also discuss the possible extension to the loop rotation equivariant setting and the relation with the Peterson isomorphism when X is the flag variety associated with G. This is based on joint work with Alexander Braverman.
We investigate weak coin flipping, a fundamental cryptographic primitive where two distrustful parties need to remotely establish a shared random bit. A cheating player can try to bias the output bit towards a preferred value. A weak coin-flipping protocol has a bias ϵ if neither player can force the outcome towards their preferred value with probability more than 1/2+ϵ. While it is known that classically ϵ=1/2, Mochon showed in 2007 [arXiv:0711.4114] that quantumly weak coin flipping can be achieved with arbitrarily small bias, i.e.