Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In models of inflation driven by an axion-like pseudoscalar field, the inflaton, a, may couple to the standard model hypercharge gauge field via a Chern-Simons-type interaction, L ⊃ a F F̃. This coupling results in the explosive production of hypermagnetic fields during inflation, which has two interesting consequences: (1) The primordial hypermagnetic field is maximally helical. It is therefore capable of sourcing the generation of nonzero baryon number around the electroweak phase transition (via the chiral anomaly in the standard model).
Transversality is one of the most desirable features of fault-tolerant circuits because it automatically limits the propagation of errors. However, it was shown by Eastin & Knill that no universal set of quantum gates on any quantum code is transversal. In this talk, we strengthen this result for stabilizer codes to say that transversal gates must in fact be contained in the Clifford hierarchy. Moreover, we present new circuits on Bacon-Shor codes that saturate our bounds.
I will explain a general strategy to lift (2+1)D topological phases, in particular string nets, to (3+1)D models with line defects. This allows a systematic construction of (3+1)D topological theories with defects, including an improved version of the Walker-Wang Model. It has also an interesting application to quantum gravity as it leads to quantum geometry realizations for which all geometric operators have discrete and bounded spectra. I will furthermore comment on some interesting (self-) duality relations that emerge in these constructions.
Ground state degeneracy is an important characteristic of topological order. It is a natural question under what conditions such topological degeneracy extends to higher energy states or even to the full energy spectrum of a model, in such a way that the degeneracy is preserved when the Hamiltonian of the system is perturbed. It appears that Ising/Majorana wires have this property due to the presence of robust edge zero modes.
It is well known that commutative Frobenius algebras can be represented as topological surfaces, using the graphical calculus of dualizable objects in monoidal 2-categories. We build on related ideas to show that the interacting Frobenius algebras of Duncan and Dunne, which have a Hopf algebra structure, arise naturally in a similar way, by requiring a single 3-morphism in a 3-category to be invertible.
Check back for details on the next lecture in Perimeter's Public Lectures Series