Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Topological quantum computing requires phases of matter which host fractionalized excitations that are neither bosons nor fermions. I will present a new route toward realizing such fractionalized phases of matter by literally building on existing topological phases. I will first discuss how existing topological phases, when interfaced with other systems, can exhibit a “topological proximity effect” in which nontrivial topology of a different nature is induced in the neighboring system.
The characteristics of black holes smaller than the Planck scale are addressed. These result from a modified metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution has two interesting features: first, it naturally implies the Generalized Uncertainty Principle. Secondly, this metric exhibits an effective dimensional reduction feature, indicating that the gravitational physics of the sub-Planckian regime is effectively (1+1)-D.
Current constraints on spatial curvature demonstrate it to be dynamically negligible at late times. However, neglecting it as a cosmological parameter would be premature, as it offers a valuable test of eternal inflation models and probes novel large-scale structure phenomena.
As we get closer to build a quantum computer, the main remaining challenge is handling the noise that aflicts quantum systems.
Topological methods, in their various forms, have become the main contestants in the quest for succesfully overcoming noise. A good deal of their strength and versatility is due to their rather unique physical flavour, which keeps giving rise to surprising developments.
In 2015 the LIGO detectors observed gravitational waves from two distinct stellar-mass binary black hole mergers. This long awaited feat now opens avenues to explore astrophysical questions which cannot, or are difficult to, be answered purely by electromagnetic means. Massive stars which end their lives in a pair-instability supernova are not thought to leave a remnant behind, meaning there should exist a gap in the black hole mass spectrum. In this talk I will discuss whether LIGO observations can tell us something about this apparent mass gap.