Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Strominger-Yau-Zaslow explained mirror symmetry via duality between tori. There have been a lot of recent developments in the SYZ program, focusing on the non-equivariant setting. In this talk, I explain an equivariant construction and apply it to toric Calabi-Yau manifolds. It has a close relation to the equivariant open GW invariants found by Aganagic-Klemm-Vafa and studied by Katz-Liu, Graber-Zaslow and many others.
2D CFTs have an infinite set of commuting conserved charges, known as the quantum KdV charges. There is a generalised Gibbs ensemble for these theories where we turn on chemical potentials for these charges. I will describe some partial results on calculating this partition function, both in the limit of large charges and perturbatively in the chemical potentials.
The partition function of three-dimensional N=2 SCFTs on circle bundles of closed Riemann surfaces \Sigma_g was recently computed via supersymmetric localization. In this talk I will describe supergravity solutions having as conformal boundary such circle bundle. These configurations are solutions to N=2 minimal gauged supergravity in 4d and pertain to the class of AdS-Taub-NUT and AdS-Taub-Bolt preserving 1/4 of the supersymmetries.
What is the black hole in quantum mechanics? We examine this problem in a self-consistent manner. First, we analyze time evolution of a 4D spherically symmetric collapsing matter including the back reaction of particle creation that occurs in the time-dependent spacetime. As a result, a compact high-density star with no horizon or singularity is formed and eventually evaporates. This is a quantum black hole. We can construct a self-consistent solution of the semi-classical Einstein equation showing this structure.
One of the central problems in the study of quantum resource theories is to provide a given resource with an operational meaning, characterizing physical tasks relevant to information processing in which the resource can give an explicit advantage over all resourceless states. We show that this can always be accomplished for all convex resource theories. We establish in particular that any resource state enables an advantage in a channel discrimination task, allowing for a strictly greater success probability than any state without the given resource.
Melonic tensor model is a new type of solvable model, where the melonic Feynman diagrams dominate in the large N limit. The melonic dominance, as well as the solvability of the model, relies on a special type of interaction vertex, which generically would not be preserved under renormalization group flow. I will discuss a class of 2d N=(2,2) melonic tensor models, where the non-renormalization of the superpotential protects the melonic dominance. Another important feature of our models is that they admit a novel type of deformations which gives a large IR conformal manifold.
In 1997, Kontsevich gave a universal solution to the "deformation quantization" problem in mathematical physics: starting from any Poisson manifold (the classical phase space), it produces a noncommutative algebra of quantum observables by deforming the ordinary multiplication of functions. His formula is a Feynma expansion, involving an infinite sum over graphs, weighted by volume integrals on the moduli space of marked holomorphic disks.
CMB Polarization
Kitaev materials — spin-orbit assisted Mott insulators, in which local, spin-orbit entangled j=1/2 moments form that are subject to strong bond-directional interactions — have attracted broad interest for their potential to realize spin liquids. Experimentally, a number of 4d and 5d systems have been widely studied including the honeycomb materials Na2IrO3, α-Li2IrO3, and RuCl3 as candidate spin liquid compounds — however, all of these materials magnetically order at sufficiently low temperatures.
Tensor Models provide one of the calculationally simplest approaches to defining a partition function for random discrete geometries. The continuum limit of these discrete models then provides a background-independent construction of a partition function of continuum geometry, which are candadates for quantum gravity. The blue-print for this approach is provided by the matrix model approach to two-dimensional quantum gravity. The past ten years have seen a lot of progress using (un)colored tensor models to describe state sums if discrete geometries in more than two dimensions.
Check back for details on the next lecture in Perimeter's Public Lectures Series