Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Positive geometries are real semialgebraic spaces that are
equipped with a meromorphic ``canonical form" whose residues reflect
the boundary structure of the space. Familiar examples include
polytopes and the positive parts of toric varieties. A central, but
conjectural, example is the amplituhedron of Arkani-Hamed and Trnka.
In this case, the canonical form should essentially be the tree
amplitude of N=4 super Yang-Mills.
Spinors as Representations of the Lorentz Group
Beyond Tree Level
The unexpected diversity of planetary systems has posed challenges to our classical understanding of planetary formation. For instance, Jupiter sized planets have been detected with short orbital periods of a few days in misaligned orbits with respect to the spin-axis of their host stars. I will first describe the statistical implication of detecting misaligned hot Jupiters and will suggest how dynamical interactions between an outer perturber and the inner planet, can naturally lead to the formation of such misaligned hot Jupiters.
Applying a chemical potential bias to a conductor drives the system out of equilibrium into a current carrying non-equilibrium state. This current flow is associated with entropy production in the leads, but it remains poorly understood under what conditions the system is driven to local equilibrium by this process. We investigate this problem using two toy models for coherent quantum transport of diffusive fermions: Anderson models in the conducting phase and a class of random quantum circuits acting on a chain of qubits, which exactly maps to an interacting fermion problem.
In the second lecture, I will extend the previous discussion to gravity, and show that the conformal trace anomaly must play a special role in the effective field theory of low energy gravity.
Check back for details on the next lecture in Perimeter's Public Lectures Series