Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
3d quantum gravity is a beautiful toy-model for 4d quantum gravity: it is much simpler, it does not have local degrees of freedom, yet retains enough complexity and subtlety to provide a non-trivial example of dynamical quantum geometry and open new directions of research in physics and mathematics. I will present the Ponzano-Regge model, introduced in 1968, built from tetrahedra “quantized" as 6j-symbols from the theory of recoupling of spins.
Experiments with ultracold fermionic gases are thriving and continue to provide us with valuable insights into fundamental aspects of physics. A special system of interest is the so-called unitary Fermi gas (UFG) situated right in the "middle" of the crossover between Bardeen-Cooper-Schrieffer superfluidity and Bose-Einstein condensation. However, the theoretical treatment of these gases is highly challenging due to the absence of a small expansion parameter as well as the appearance of the infamous sign problem in the presence of, e.g., finite spin polarizations.
I will give an overview of recent results on three-dimensional N=2 supersymmetric gauge theories placed on arbitrary half-BPS geometries. In particular, I will explain an explicit computation of the supersymmetric partition function on any Seifert three-manifold; such manifolds can have very intricate and interesting topology (for instance, a nice example is the Poincaré sphere) and can provide new interesting observables in 3d SCFTs.
Bosonic ultra-light dark matter (ULDM) would form cored density distributions at the centres of galaxies. These cores admit analytic description as the lowest energy bound state solution ("soliton") of the Schrödinger-Poisson equations. Numerical simulations of ULDM galactic halos found empirical scaling relations between the mass of the large-scale host halo and the mass of the central soliton.