- Home »
- Fusion Hall algebra and shuffle conjectures

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

19030095

The classical Hall algebra of the category of representations of one-loop quiver is isomorphic to the ring of symmetric functions, and Hall-Littlewood polynomials arise naturally as the images of objects. I will talk about a second "fusion" product on this algebra, whose structure constants are given by counting of bundles with nilpotent endomorphisms on P^1 with restrictions at 0, 1 and infinity. The two products together make up a structure closely related to the elliptic Hall algebra. In the situations when bundles can be explicitly enumerated, I will explain how this leads to q,t-identities conjectured by combinatorists, such as the shuffle conjecture and its generalizations. This is a joint project with Erik Carlsson.

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics